Abstract

In this study, a Bayesian optimization (BO) based computational framework is developed to investigate the design of transcatheter aortic valve (TAV) leaflets and to optimize leaflet geometry such that its peak stress under the blood pressure of 120 mmHg is reduced. A generic TAV model is parametrized by mathematical equations describing its 2D shape and its 3D stent-leaflet assembly line. Material properties previously obtained for bovine pericardium (BP) and porcine pericardium (PP) via a combination of flexural and biaxial tensile testing were incorporated into the finite element (FE) model of TAV. A BO approach was employed to investigate about 1000 leaflet designs for each material under the nominal circular deployment and physiological loading conditions. The optimal parameter values of the TAV model were obtained, corresponding to leaflet shapes that can reduce the peak stress by 16.7% in BP and 18.0% in PP, compared with that from the initial generic TAV model. Furthermore, it was observed that while peak stresses tend to concentrate near the stent-leaflet attachment edge, optimized geometries benefit from more uniform stress distributions in the leaflet circumferential direction. Our analysis also showed that increasing leaflet contact area redistributes peak stresses to the belly region contributing to peak stress reduction. The results from this study may inspire new TAV designs that can have better durability.

References

References
1.
Cribier
,
A.
,
Eltchaninoff
,
H.
,
Bash
,
A.
,
Borenstein
,
N.
,
Tron
,
C.
,
Bauer
,
F.
,
Derumeaux
,
G.
,
Anselme
,
F.
,
Laborde
,
F.
, and
Leon
,
M. B.
,
2002
, “
Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description
,”
Circulation
,
106
(
24
), pp.
3006
3008
.10.1161/01.CIR.0000047200.36165.B8
2.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
,
Pocock
,
S.
, and
Investigators
,
P. T.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
N. Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.10.1056/NEJMoa1008232
3.
FDA News Release
,
2016
, “USFDA: FDA Approves Expanded Indication for Two Transcatheter Heart Valves for Patients at Intermediate Risk for Death or Complications Associated With Open-Heart Surgery,” accessed Aug. 06, 2019, https://www.fda.gov/news-events/press-announcements/fda-approves-expanded-indication-two-transcatheter-heart-valves-patients-intermediate-risk-death-or
4.
Puri
,
R.
, and
Rodés-Cabau
,
J.
,
2016
, “
Transcatheter Aortic Valve ReplacementA Revolution in Evolution
,”
JACC: Cardiovasc. Interventions
,
9
(
4
), pp.
364
366
.10.1016/j.jcin.2015.12.019
5.
Barbanti
,
M.
,
Webb
,
J. G.
,
Gilard
,
M.
,
Capodanno
,
D.
, and
Tamburino
,
C.
,
2017
, “
Transcatheter Aortic Valve Implantation in 2017: State of the Art
,”
EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology
, pp.
Aa11
Aa21
.
6.
Mack
,
M. J.
,
Leon
,
M. B.
,
Smith
,
C. R.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Douglas
,
P. S.
,
Anderson
,
W. N.
,
Blackstone
,
E. H.
,
Kodali
,
S. K.
,
Makkar
,
R. R.
,
Fontana
,
G. P.
,
Kapadia
,
S.
,
Bavaria
,
J.
,
Hahn
,
R. T.
,
Thourani
,
V. H.
,
Babaliaros
,
V.
,
Pichard
,
A.
,
Herrmann
,
H. C.
,
Brown
,
D. L.
,
Williams
,
M.
,
Akin
,
J.
,
Davidson
,
M. J.
, and
Svensson
,
L. G.
,
2015
, “
5-year Outcomes of Transcatheter Aortic Valve Replacement or Surgical Aortic Valve Replacement for High Surgical Risk Patients With Aortic Stenosis (PARTNER 1): A Randomised Controlled Trial
,”
Lancet
,
385
(
9986
), pp.
2477
2484
.10.1016/S0140-6736(15)60308-7
7.
Sondergaard
,
L.
,
2016
, “
Time to Explore Transcatheter Aortic Valve Replacement in Younger, Low-Risk Patients
,”
JACC Cardiovasc. Interventions
,
9
(
21
), pp.
2183
2185
.10.1016/j.jcin.2016.08.015
8.
Sorajja
,
P.
, and
Pedersen
,
W.
,
2014
, “
Next-Generation Transcatheter Aortic Valve Replacement: Evolution of a Revolution
,”
J. Am. Coll. Cardiol.
,
64
(
13
), pp.
1349
1351
.10.1016/j.jacc.2014.06.1187
9.
Capodanno
,
D.
,
Petronio
,
A. S.
,
Prendergast
,
B.
,
Eltchaninoff
,
H.
,
Vahanian
,
A.
,
Modine
,
T.
,
Lancellotti
,
P.
,
Sondergaard
,
L.
,
Ludman
,
P. F.
, and
Tamburino
,
C.
,
2017
, “
Standardized Definitions of Structural Deterioration and Valve Failure in Assessing Long-Term Durability of Transcatheter and Surgical Aortic Bioprosthetic Valves: A Consensus Statement From the European Association of Percutaneous Cardiovascular Interventions (EAPCI) Endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)
,”
Eur. J. Cardio-Thorac. Surg.
,
52
, pp.
408
417
.10.1093/ejcts/ezx244
10.
Dvir
,
D.
,
Eltchaninoff
,
H.
,
Ye
,
J.
,
Kan
,
A.
,
Durand
,
E.
,
Bizios
,
A.
,
Cheung
,
A.
,
Aziz
,
M.
,
Simonato
,
M.
, and
Tron
,
C.
,
2016
, “
First Look at Long-Term Durability of Transcatheter Heart Valves: Assessment of Valve Function Up to 10 Years After Implantation
,”
EUROPCR
,
Paris, France
,
May 17–20
.
11.
Toggweiler
,
S.
,
Humphries
,
K. H.
,
Lee
,
M.
,
Binder
,
R. K.
,
Moss
,
R. R.
,
Freeman
,
M.
,
Ye
,
J.
,
Cheung
,
A.
,
Wood
,
D. A.
, and
Webb
,
J. G.
,
2013
, “
5-year Outcome After Transcatheter Aortic Valve Implantation
,”
J. Am. Coll. Cardiol.
,
61
(
4
), pp.
413
419
.10.1016/j.jacc.2012.11.010
12.
Schoen
,
F. J.
,
Fernandez
,
J.
,
Gonzalez-Lavin
,
L.
, and
Cernaianu
,
A.
,
1987
, “
Causes of Failure and Pathologic Findings in Surgically Removed Ionescu- Shiley Standard Bovine Pericardial Heart Valve Bioprostheses: Emphasis on Progressive Structural Deterioration
,”
Circulation
,
76
(
3
), pp.
618
627
.10.1161/01.CIR.76.3.618
13.
Hilbert
,
S. L.
,
Ferrans
,
V. J.
, and
Swanson
,
W. M.
,
1986
, “
Optical Methods for the Nondestructive Evaluation of Collagen Morphology in Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
,
20
(
9
), pp.
1411
1421
.10.1002/jbm.820200914
14.
Love
,
J. W.
, and
Willems
,
P. W.
,
1994
,
Love CS: New Horizons and the Future of Heart Valve Prostheses
,
Silent Partners
,
Austin, TX
.
15.
Sacks
,
M. S.
, and
Schoen
,
F. J.
,
2002
, “
Collagen Fiber Disruption Occurs Independent of Calcification in Clinically Explanted Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
,
62
(
3
), pp.
359
371
.10.1002/jbm.10293
16.
Martin
,
C.
, and
Sun
,
W.
,
2015
, “
Comparison of Transcatheter Aortic Valve and Surgical Bioprosthetic Valve Durability: A Fatigue Simulation Study
,”
J. Biomech.
,
48
(
12
), pp.
3026
3034
.10.1016/j.jbiomech.2015.07.031
17.
Martin
,
C.
, and
Sun
,
W.
,
2014
, “
Simulation of Long-Term Fatigue Damage in Bioprosthetic Heart Valves: Effects of Leaflet and Stent Elastic Properties
,”
Biomech. Model. Mechanobiol.
,
13
(
4
), pp.
759
770
.10.1007/s10237-013-0532-x
18.
Caballero
,
A.
,
Sulejmani
,
F.
,
Martin
,
C.
,
Pham
,
T.
, and
Sun
,
W.
,
2017
, “
Evaluation of Transcatheter Heart Valve Biomaterials: Biomechanical Characterization of Bovine and Porcine Pericardium
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
486
494
.10.1016/j.jmbbm.2017.08.013
19.
Loerakker
,
S.
,
Argento
,
G.
,
Oomens
,
C. W.
, and
Baaijens
,
F. P.
,
2013
, “
Effects of Valve Geometry and Tissue Anisotropy on the Radial Stretch and Coaptation Area of Tissue-Engineered Heart Valves
,”
J. Biomech.
,
46
(
11
), pp.
1792
1800
.10.1016/j.jbiomech.2013.05.015
20.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.10.1115/1.2049337
21.
Li
,
K.
, and
Sun
,
W.
,
2010
, “
Simulated Thin Pericardial Bioprosthetic Valve Leaflet Deformation Under Static Pressure-Only Loading Conditions: Implications for Percutaneous Valves
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2690
2701
.10.1007/s10439-010-0009-3
22.
Li
,
K.
, and
Sun
,
W.
,
2017
, “
Simulated Transcatheter Aortic Valve Deformation: A Parametric Study on the Impact of Leaflet Geometry on Valve Peak Stress
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
3
), p.
e02812
.10.1002/cnm.2814
23.
Murdock
,
K.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
Characterization of Mechanical Properties of Pericardium Tissue Using Planar Biaxial Tension and Flexural Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
148
156
.10.1016/j.jmbbm.2017.08.039
24.
Mao
,
W.
,
Li
,
K.
, and
Sun
,
W.
,
2016
, “
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics
,”
Cardiovasc. Eng. Technol.
,
7
(
4
), pp.
374
388
.10.1007/s13239-016-0285-7
25.
Sun
,
W.
,
Li
,
K.
, and
Sirois
,
E.
,
2010
, “
Simulated Elliptical Bioprosthetic Valve Deformation: Implications for Asymmetric Transcatheter Valve Deployment
,”
J. Biomech.
,
43
(
16
), pp.
3085
3090
.10.1016/j.jbiomech.2010.08.010
26.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
De Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.10.1109/JPROC.2015.2494218
27.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.10.1007/s10898-005-2454-3
28.
Močkus
,
J.
,
1975
, “
On Bayesian Methods for Seeking the Extremum,”
Optimization Techniques IFIP Technical Conference Novosibirsk
,
July 1–7
. Optimization Techniques 1974. Lecture Notes in Computer Science, Vol 27, Marchuk G.I., Ed.,
Springer
,
Berlin, Heidelberg
.
29.
Hansen
,
N.
,
Müller
,
S. D.
, and
Koumoutsakos
,
P.
,
2003
, “
Reducing the Time Complexity of the Derandomized Evolution Strategy With Covariance Matrix Adaptation (CMA-ES)
,”
Evol. Comput.
,
11
(
1
), pp.
1
18
.10.1162/106365603321828970
30.
Martin
,
C.
, and
Sun
,
W.
,
2017
, “
Transcatheter Valve Underexpansion Limits Leaflet Durability: Implications for Valve-in-Valve Procedures
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
394
404
.10.1007/s10439-016-1738-8
You do not currently have access to this content.