Abstract

Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.

References

References
1.
Gibson
,
J. N. A.
, and
Waddell
,
G.
,
2005
, “
Surgery for Degenerative Lumbar Spondylosis: Updated Cochrane Review
,”
Spine J.
,
30
(
20
), pp.
2312
2320
.10.1097/01.brs.0000182315.88558.9c
2.
Kanayama
,
M.
,
Togawa
,
D.
,
Hashimoto
,
T.
,
Shigenobu
,
K.
, and
Oha
,
F.
,
2009
, “
Motion-Preserving Surgery Can Prevent Early Breakdown of Adjacent Segments: Comparison of Posterior Dynamic Stabilization With Spinal Fusion
,”
Clin. Spine Surg.
,
22
(
7
), pp.
463
467
.10.1097/BSD.0b013e3181934512
3.
Mannion
,
A. F.
,
Leivseth
,
G.
,
Brox
,
J.
,
Fritzell
,
P.
,
Hägg
,
O.
, and
Fairbank
,
J. C.
,
2014
, “
Long-Term Follow Up Suggests Spinal Fusion Is Associated With Increased Adjacent Segment Disc Degeneration but Without Influence on Clinical Outcome: Results of a Combined Follow-Up From 4 Randomized Controlled Trials
,”
Spine
,
39
(
17
), pp.
1373
1383
.10.1097/BRS.0000000000000437
4.
Malakoutian
,
M.
,
Volkheimer
,
D.
,
Street
,
J.
,
Dvorak
,
M. F.
,
Wilke
,
H. J.
, and
Oxland
,
T. R.
,
2015
, “
Do In Vivo Kinematic Studies Provide Insight Into Adjacent Segment Degeneration? A Qualitative Systematic Literature Review
,”
Eur. Spine J.
,
24
(
9
), pp.
1865
1881
.10.1007/s00586-015-3992-0
5.
Lee
,
S. E.
,
Jahng
,
T.-A.
, and
Kim
,
H.-J.
,
2014
, “
Decompression and Nonfusion Dynamic Stabilization for Spinal Stenosis With Degenerative Lumbar Scoliosis
,”
J. Neurosurg.: Spine
,
21
(
4
), pp.
585
594
.10.3171/2014.6.SPINE13190
6.
Lee
,
C.-H.
,
Jahng
,
T.-A.
,
Hyun
,
S.-J.
,
Kim
,
C. H.
,
Park
,
S.-B.
,
Kim
,
K.-J.
,
Chung
,
C. K.
,
Kim
,
H.-J.
, and
Lee
,
S.-E.
,
2016
, “
Dynamic Stabilization Using the Dynesys System Versus Posterior Lumbar Interbody Fusion for the Treatment of Degenerative Lumbar Spinal Disease: A Clinical and Radiological Outcomes-Based Meta-Analysis
,”
Neurosurg. Focus
,
40
(
1
), p.
E72016
.10.3171/2015.10.FOCUS1542
7.
Schnake
,
K. J.
,
Schaeren
,
S.
, and
Jeanneret
,
B.
,
2006
, “
Dynamic Stabilization in addition to Decompression for Lumbar Spinal Stenosis With Degenerative Spondylolisthesis
,”
Spine J.
,
31
(
4
), pp.
442
449
.10.1097/01.brs.0000200092.49001.6e
8.
Morishita
,
Y.
,
Ohta
,
H.
,
Naito
,
M.
,
Matsumoto
,
Y.
,
Huang
,
G.
,
Tatsumi
,
M.
,
Takemitsu
,
Y.
, and
Kida
,
H.
,
2011
, “
Kinematic Evaluation of the Adjacent Segments After Lumbar Instrumented Surgery: A Comparison Between Rigid Fusion and Dynamic Non-Fusion Stabilization
,”
Eur. Spine J.
,
20
(
9
), pp.
1480
1485
.10.1007/s00586-011-1701-1
9.
St. John
,
K. R.
,
2014
, “
The Use of Polyurethane Materials in the Surgery of the Spine: A Review
,”
Spine J.
,
14
(
12
), pp.
3038
3047
.10.1016/j.spinee.2014.08.012
10.
Beckmann
,
A.
,
Heider
,
Y.
,
Stoffel
,
M.
, and
Markert
,
B.
,
2018
, “
Assessment of the Viscoelastic Mechanical Properties of Polycarbonate Urethane for Medical Devices
,”
J. Mech. Behav. Biomed. Mater.
,
82
, pp.
1
8
.10.1016/j.jmbbm.2018.02.015
11.
Shemesh
,
A.
,
Asher
,
T.-H.
,
Zylberberg
,
H. S.
,
Guilak
,
N.
,
Linder-Ganz
,
C.-H.
, and
Elsner
,
V. M.
,
2014
, “
Viscoelastic Properties of a Synthetic Meniscus Implant
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
42
55
.10.1016/j.jmbbm.2013.08.021
12.
Geary
,
C.
,
Birkinshaw
,
C.
, and
Jones
,
E.
,
2008
, “
Characterisation of Bionate Polycarbonate Polyurethanes for Orthopaedic Applications
,”
J. Mater. Sci.: Mater. Med.
,
19
(
11
), pp.
3355
3363
.10.1007/s10856-008-3472-8
13.
Strube
,
P.
,
Tohtz
,
S.
,
Hoff
,
E.
,
Gross
,
C.
,
Perka
,
C.
, and
Putzier
,
M.
,
2010
, “
Dynamic Stabilization Adjacent to Single-Level Fusion—Part I: Biomechanical Effects on Lumbar Spinal Motion
,”
Eur. Spine J.
,
19
(
12
), pp.
2171
2180
.10.1007/s00586-010-1549-9
14.
Niosi
,
C. A.
,
Zhu
,
Q.
,
Wilson
,
D. C.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
,
2006
, “
Biomechanical Characterization of the Three-Dimensional Kinematic Behaviour of the Dynesys Dynamic Stabilization System: An In Vitro Study
,”
Eur. Spine J.
,
15
(
6
), pp.
913
922
.10.1007/s00586-005-0948-9
15.
Schmoelz
,
W.
,
Huber
,
J.-F.
,
Nydegger
,
T.
,
Claes
,
L.
,
Jeon
,
C.-H.
, and
Wilke
,
H.-J.
,
2006
, “
Influence of a Dynamic Stabilisation System on Load Bearing of a Bridged Disc: An In Vitro Study of Intradiscal Pressure
,”
Eur. Spine J.
,
15
(
8
), pp.
1276
1285
.10.1007/s00586-005-0032-5
16.
Jacobs
,
E.
,
Roth
,
A. K.
,
Arts
,
J. J.
,
van Rhijn
,
L. W.
,
Jeon
,
C.-H.
, and
Willems
,
P. C.
,
2017
, “
Reduction of Intradiscal Pressure by the Use of Polycarbonate-Urethane Rods as Compared to Titanium Rods in Posterior Thoracolumbar Spinal Fixation
,”
J. Mater. Sci.: Mater. Med.
,
28
(
10
), p.
148
.10.1007/s10856-017-5953-0
17.
ASTM
2016
, “
Static, Dynamic, and Wear Assessment of Extradiscal Single Level Spinal Constructs
,” ASTM International, West Conshohocken, PA, Standard No. ASTM F2624-12.
18.
Jahng
,
T. A.
,
Kim
,
Y. E.
, and
Moon
,
K. Y.
,
2013
, “
Comparison of the Biomechanical Effect of Pedicle-Based Dynamic Stabilization: A Study Using Finite Element Analysis
,”
Spine J.
,
13
(
1
), pp.
85
94
.10.1016/j.spinee.2012.11.014
19.
Meyers
,
K.
,
Tauber
,
M.
,
Sudin
,
Y.
,
Fleischer
,
S.
,
Arnin
,
U.
,
Girardi
,
F.
, and
Wright
,
T.
,
2008
, “
Use of Instrumented Pedicle Screws to Evaluate Load Sharing in Posterior Dynamic Stabilization Systems
,”
Spine J.
,
8
(
6
), pp.
926
932
.10.1016/j.spinee.2007.08.008
20.
Wilke
,
H.-J.
,
Heuer
,
F.
, and
Schmidt
,
H.
,
2009
, “
Prospective Design Delineation and Subsequent
,”
Spine J.
,
34
(
3
), pp.
255
261
.10.1097/BRS.0b013e3181920e9c
21.
Volkheimer
,
D.
,
Malakoutian
,
M.
,
Oxland
,
T. R.
, and
Wilke
,
H. J.
,
2015
, “
Limitations of Current In Vitro Test Protocols for Investigation of Instrumented Adjacent Segment Biomechanics: Critical Analysis of the Literature
,”
Eur. Spine J.
,
24
(
9
), pp.
1882
1892
.10.1007/s00586-015-4040-9
22.
Wilke
,
H.-J.
,
Rohlmann
,
C.
,
Neidlinger-Wilke
,
C.
,
Werner
,
K.
,
Claes
,
L.
, and
Kettler
,
A.
,
2006
, “
Validity and Interobserver Agreement of a New Radiographic Grading System for Intervertebral Disc Degeneration—Part I: Lumbar Spine
,”
Eur. Spine J.
,
15
(
6
), pp.
720
730
.10.1007/s00586-005-1029-9
23.
Beckmann
,
A.
,
Herren
,
C.
,
Mundt
,
M.
,
Siewe
,
J.
,
Kobbe
,
P.
,
Sobottke
,
R.
,
Pape
,
H.-C.
,
Stoffel
,
M.
, and
Markert
,
B.
,
2017
, “
A New In Vitro Spine Test Rig to Track Multiple Vertebral Motions Under Physiological Conditions. Biomedical Engineering
,”
Biomed. Eng.
,
63
(
4
), pp.
341
347
.10.1515/bmt-2016-0173
24.
Herren
,
C.
,
Beckmann
,
A.
,
Meyer
,
S.
,
Pishnamaz
,
M.
,
Mundt
,
M.
,
Prescher
,
A.
,
Sobottke
,
R.
,
Stoffel
,
M.
,
Markert
,
B.
,
Kobbe
,
P.
,
Pape
,
H.-C.
,
Eysel
,
P.
, and
Siewe
,
J.
,
2017
, “
Biomechanical Testing of a PEEK-Based Dynamic Instrumentation Device in a Lumbar Spine Model
,”
Clin. Biomech.
,
44
, pp.
67
74
.10.1016/j.clinbiomech.2017.03.009
25.
Beckmann
,
A.
,
Herren
,
C.
,
Nicolini
,
L. F.
,
Grevenstein
,
D.
,
Oikonomidis
,
S.
,
Kobbe
,
P.
,
Hildebrand
,
F.
,
Stoffel
,
M.
,
Markert
,
B.
, and
Siewe
,
J.
,
2019
, “
Biomechanical Testing of a Polycarbonate-Urethane-Based Dynamic Instrumentation System Under Physiological Conditions
,”
Clin. Biomech.
,
61
, pp.
112
119
.10.1016/j.clinbiomech.2018.12.003
26.
Heuer
,
F.
,
Schmidt
,
H.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Vertebral Translation and Intradiscal Pressure
,”
J. Biomech.
,
40
(
4
), pp.
795
803
.10.1016/j.jbiomech.2006.03.016
27.
Smit
,
T. H.
,
van Tunen
,
M. S.
,
van der Veen
,
A. J.
,
Kingma
,
I.
, and
van Dieën
,
J. H.
,
2011
, “
Quantifying Intervertebral Disc Mechanics: A New Definition of the Neutral Zone
,”
BMC Musculoskeletal Disord.
,
12
(
1
), p.
38
.10.1186/1471-2474-12-38
28.
Panjabi
,
M. M.
,
2007
, “
Hybrid Multidirectional Test Method to Evaluate Spinal Adjacent-Level Effects
,”
Clin. Biomech.
,
22
(
3
), pp.
257
265
.10.1016/j.clinbiomech.2006.08.006
29.
Bogduk
,
N.
,
Amevo
,
B.
, and
Pearcy
,
M.
,
1995
, “
A Biological Basis for Instantaneous Centers of Rotation of the Vertebral Column
,”
Proc. Inst. Mech. Eng., Part H
,
209
(
3
), pp.
177
183
.10.1243/PIME_PROC_1995_209_341_02
30.
Schilling
,
C.
,
Krüger
,
S.
,
Beger
,
J.
,
Wing
,
C.
,
Spenciner
,
D.
,
Graham
,
J.
, and
Dean
,
S. W.
,
2012
, “
Rationale of a Test Setup With a Defined COR for Extradiscal Motion-Preserving Implants With a Low Implant Stiffness
,”
J. ASTM Int.
,
9
(
2
), p.
103537
.10.1520/JAI103537
31.
Schilling
,
C.
,
Pfeiffer
,
M.
,
Grupp
,
T. M.
,
Blömer
,
W.
, and
Rohlmann
,
A.
,
2014
, “
The Effect of Design Parameters of Interspinous Implants on Kinematics and Load Bearing: An In Vitro Study
,”
Eur. Spine J.
,
23
(
4
), pp.
762
771
.10.1007/s00586-014-3237-7
32.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H.-J.
,
2008
, “
Interaction Between Finite Helical Axes and Facet Joint Forces Under Combined Loading
,”
Spine J.
,
33
(
25
), pp.
2741
2748
.10.1097/BRS.0b013e31817c4319
33.
Ko
,
C.-C.
,
Tsai
,
H.-W.
,
Huang
,
W.-C.
,
Wu
,
J.-C.
,
Chen
,
Y.-C.
,
Shih
,
Y.-H.
,
Chen
,
H.-C.
,
Wu
,
C.-L.
, and
Cheng
,
H.
,
2010
, “
Screw Loosening in the Dynesys Stabilization System: Radiographic Evidence and Effect on Outcomes
,”
Neurosurg. Focus
,
28
(
6
), p.
E10
.10.3171/2010.3.FOCUS1052
34.
Liebsch
,
C.
,
Zimmermann
,
J.
,
Graf
,
N.
,
Schilling
,
C.
,
Wilke
,
H.-J.
, and
Kienle
,
A.
,
2018
, “
In Vitro Validation of a Novel Mechanical Model for Testing the Anchorage Capacity of Pedicle Screws Using Physiological Load Application
,”
J. Mech. Behav. Biomed. Mater.
,
77
(
10
), pp.
578
585
.10.1016/j.jmbbm.2017.10.030
You do not currently have access to this content.