Abstract

Atrial fibrillation (AF) is associated with a fivefold increase in the risk of cerebrovascular events, being responsible of 15–18% of all strokes. The morphological and functional remodeling of the left atrium (LA) caused by AF favors blood stasis and, consequently, stroke risk. In this context, several clinical studies suggest that the stroke risk stratification could be improved by using hemodynamic information on the LA and the left atrial appendage (LAA). The goal of this study was to develop a personalized computational fluid dynamics (CFD) model of the LA which could clarify the hemodynamic implications of AF on a patient-specific basis. In this paper, we present the developed model and its application to two AF patients as a preliminary advancement toward an optimized stroke risk stratification pipeline.

References

References
1.
Chugh
,
S. S.
,
Blackshear
,
J. L.
,
Shen
,
W.-K.
,
Hammill
,
S. C.
, and
Gersh
,
B. J.
,
2001
, “
Epidemiology and Natural History of Atrial Fibrillation: Clinical Implications
,”
J. Am. Coll. Cardiol.
,
37
(
2
), pp.
371
378
.10.1016/S0735-1097(00)01107-4
2.
Go
,
A. S.
,
Hylek
,
E. M.
,
Phillips
,
K. A.
,
Chang
,
Y.
,
Henault
,
L. E.
,
Selby
,
J. V.
, and
Singer
,
D. E.
,
2001
, “
Prevalence of Diagnosed Atrial Fibrillation in Adults: National Implications for Rhythm Management and Stroke Prevention: The Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study
,”
JAMA
,
285
(
18
), pp.
2370
2375
.10.1001/jama.285.18.2370
3.
Wolf
,
P. A.
,
Abbott
,
R. D.
, and
Kannel
,
W. B.
,
1991
, “
Atrial Fibrillation as an Independent Risk Factor for Stroke: The Framingham Study
,”
Stroke
,
22
(
8
), pp.
983
988
.10.1161/01.STR.22.8.983
4.
Camm
,
A. J.
,
Kirchhof
,
P.
,
Lip
,
G. Y.
,
Schotten
,
U.
,
Savelieva
,
I.
,
Ernst
,
S.
,
Van Gelder
,
I. C.
,
Al-Attar
,
N.
,
Hindricks
,
G.
,
Prendergast
,
B.
, Al-Attar, N., Hindricks, G., Prendergast, B., Heidbuchel, H., Alfieri, O., Angelini, A., Atar, A., D. A., Colonna, P., De Caterina, R., De Sutter, J., Goette, A., Gorenek, B., Heldal, M., Hohloser, S. H., Kolh, P., Le Heuzey, J. Y., Ponikowski, P., and Rutten, F. H.,
2010
, “
Guidelines for the Management of Atrial Fibrillation
,”
Eur. Heart J.
,
31
(
19
), pp.
2369
2429
.10.1093/eurheartj/ehq278
5.
Fluckiger
,
J. U.
,
Goldberger
,
J. J.
,
Lee
,
D. C.
,
Ng
,
J.
,
Lee
,
R.
,
Goyal
,
A.
, and
Markl
,
M.
,
2013
, “
Left Atrial Flow Velocity Distribution and Flow Coherence Using Four-Dimensional Flow MRI: A Pilot Study Investigating the Impact of Age and Pre-and Postintervention Atrial Fibrillation on Atrial Hemodynamics
,”
J. Magn. Reson. Imaging
,
38
(
3
), pp.
580
587
.10.1002/jmri.23994
6.
Allessie
,
M.
,
Ausma
,
J.
, and
Schotten
,
U.
,
2002
, “
Electrical, Contractile and Structural Remodeling During Atrial Fibrillation
,”
Cardiovasc. Res.
,
54
(
2
), pp.
230
246
.10.1016/S0008-6363(02)00258-4
7.
Gupta
,
D. K.
,
Shah
,
A. M.
,
Giugliano
,
R. P.
,
Ruff
,
C. T.
,
Antman
,
E. M.
,
Grip
,
L. T.
,
Deenadayalu
,
N.
,
Hoffman
,
E.
,
Patel
,
I.
,
Shi
,
M.
,
Mercuri
,
M.
,
Mitrovic
,
V.
,
Braunwald
,
E.
, and
Solomon
,
S. D.
,
2014
, “
Left Atrial Structure and Function in Atrial Fibrillation: Engage AF-TIMI 48
,”
Eur. Heart J.
,
35
(
22
), pp.
1457
1465
.10.1093/eurheartj/eht500
8.
Di Biase
,
L.
,
Santangeli
,
P.
,
Anselmino
,
M.
,
Mohanty
,
P.
,
Salvetti
,
I.
,
Gili
,
S.
,
Horton
,
R.
,
Sanchez
,
J. E.
,
Bai
,
R.
,
Mohanty
,
S.
,
Pump
,
A.
,
Cereceda Brantes
,
M.
,
Gallinghouse
,
G. J.
,
Burkhardt
,
J. D.
,
Cesarani
,
F.
,
Scaglione
,
M.
,
Natale
,
A.
, and
Gaita
,
F.
,
2012
, “
Does the Left Atrial Appendage Morphology Correlate With the Risk of Stroke in Patients With Atrial Fibrillation?: Results From a Multicenter Study
,”
J. Am. Coll. Cardiol.
,
60
(
6
), pp.
531
538
.10.1016/j.jacc.2012.04.032
9.
Chnafa
,
C.
,
Mendez
,
S.
, and
Nicoud
,
F.
,
2014
, “
Image-Based Large-Eddy Simulation in a Realistic Left Heart
,”
Comput. Fluids
,
94
, pp.
173
187
.10.1016/j.compfluid.2014.01.030
10.
Tagliabue
,
A.
,
Dedè
,
L.
, and
Quarteroni
,
A.
,
2017
, “
Complex Blood Flow Patterns in an Idealized Left Ventricle: A Numerical Study
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
27
(
9
), p.
093939
.10.1063/1.5002120
11.
Tagliabue
,
A.
,
Dedè
,
L.
, and
Quarteroni
,
A.
,
2017
, “
Fluid Dynamics of an Idealized Left Ventricle: The Extended Nitsche's Method for the Treatment of Heart Valves as Mixed Time Varying Boundary Conditions
,”
Int. J. Numer. Methods Fluids
,
85
(
3
), pp.
135
164
.10.1002/fld.4375
12.
Zhang
,
L. T.
, and
Gay
,
M.
,
2008
, “
Characterizing Left Atrial Appendage Functions in Sinus Rhythm and Atrial Fibrillation Using Computational Models
,”
J. Biomech.
,
41
(
11
), pp.
2515
2523
.10.1016/j.jbiomech.2008.05.012
13.
Koizumi
,
R.
,
Funamoto
,
K.
,
Hayase
,
T.
,
Kanke
,
Y.
,
Shibata
,
M.
,
Shiraishi
,
Y.
, and
Yambe
,
T.
,
2015
, “
Numerical Analysis of Hemodynamic Changes in the Left Atrium Due to Atrial Fibrillation
,”
J. Biomech.
,
48
(
3
), pp.
472
478
.10.1016/j.jbiomech.2014.12.025
14.
García-Isla
,
G.
,
Olivares
,
A. L.
,
Silva
,
E.
,
Nuñez-Garcia
,
M.
,
Butakoff
,
C.
,
Sanchez-Quintana
,
D.
,
G. Morales
,
H.
,
Freixa
,
X.
,
Noailly
,
J.
,
De Potter
,
T.
, and
Camara
,
O.
,
2018
, “
Sensitivity Analysis of Geometrical Parameters to Study Haemodynamics and Thrombus Formation in the Left Atrial Appendage
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
8
), p.
e3100
.10.1002/cnm.3100
15.
Menghini
,
F.
,
Dedè
,
L.
,
Forti
,
D.
, and
Quarteroni
,
A.
,
2017
, “
Hemodynamics in a Left Atrium Based on a Variational Multiscale–LES Numerical Model
,” Politecnico di Milano, Milan, Italy, MOX Report No. 47/2017.
16.
Otani
,
T.
,
Al-Issa
,
A.
,
Pourmorteza
,
A.
,
McVeigh
,
E. R.
,
Wada
,
S.
, and
Ashikaga
,
H.
,
2016
, “
A Computational Framework for Personalized Blood Flow Analysis in the Human Left Atrium
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3284
3294
.10.1007/s10439-016-1590-x
17.
Masci
,
A.
,
Alessandrini
,
M.
,
Forti
,
D.
,
Menghini
,
F.
,
Dedé
,
L.
,
Tommasi
,
C.
,
Quarteroni
,
A.
, and
Corsi
,
C.
,
2017
, “
A Patient-Specific Computational Fluid Dynamics Model of the Left Atrium in Atrial Fibrillation: Development and Initial Evaluation
,”
International Conference on Functional Imaging and Modeling of the Heart
,
Toronto, Canada
, pp.
392
400
.
18.
The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology
,
2016
, “
Guidelines for the Management of Atrial Fibrillation Developed in Collaboration With EACTS
,”
Europace
,
18
, pp.
1609
1678
.10.1093/europace/euw295
19.
MATLAB,
1998
, “
Guide, MATLAB User's
,” The Mathworks, Natick, MA.
20.
Cignoni
,
P.
,
Corsini
,
M.
, and
Ranzuglia
,
G.
,
2008
, “
Meshlab: An Open-Source 3D Mesh Processing System
,”
Ercim News
,
73
(
45–46
), p.
6
.
21.
Antiga
,
L.
, and
Steinman
,
D. A.
,
2012
, “
VMTK: Vascular Modeling Toolkit
,”
.
22.
Unser
,
M.
,
1999
, “
Splines: A Perfect Fit for Signal and Image Processing
,”
IEEE Signal Process. Mag.
,
16
(
6
), pp.
22
38
.10.1109/79.799930
23.
Sanatkhani
,
S.
, and
Menon
,
P. G.
,
2017
, “
Relating Atrial Appendage Flow Stasis Risk From Computational Fluid Dynamics to Imaging Based Appearance Paradigms for Cardioembolic Risk
,”
Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound
,
Springer
, Berlin, pp.
86
93
.
24.
Khurram
,
R. A.
, and
Masud
,
A.
,
2006
, “
A Multiscale/Stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–Structure Interaction
,”
Comput. Mech.
,
38
(
4–5
), pp.
403
416
.10.1007/s00466-006-0059-4
25.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
, and
Rodriguez-Ferran
,
A.
,
2004
, “
Chapter 14: Arbitrary Lagrangian-Eulerian Methods
,”
Encyclopedia of Computational Mechanics: Fundamentals
, Vol.
1
.
26.
Quarteroni
,
A.
,
2010
,
Numerical Models for Differential Problems
, Vol.
2
,
Springer Science & Business Media
, Berlin.
27.
Forti
,
D.
, and
Dedè
,
L.
,
2015
, “
Semi-Implicit BDF Time Discretization of the Navier–Stokes Equations With VMS-LES Modeling in a High Performance Computing Framework
,”
Comput. Fluids
,
117
, pp.
168
182
.10.1016/j.compfluid.2015.05.011
28.
Nobile
,
F.
,
2001
, “
Numerical Approximation of Fluid-Structure Interaction Problems With Application to Haemodynamics
,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
29.
Scovazzi
,
G.
,
2007
, “
A Discourse on Galilean Invariance, SUPG Stabilization, and the Variational Multiscale Framework
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
1108
1132
.10.1016/j.cma.2006.08.012
30.
Mansour
,
M.
,
Holmvang
,
G.
,
Sosnovik
,
D.
,
Migrino
,
R.
,
Abbara
,
S.
,
Ruskin
,
J.
, and
Keane
,
D.
,
2004
, “
Assessment of Pulmonary Vein Anatomic Variability by Magnetic Resonance Imaging: Implications for Catheter Ablation Techniques for Atrial Fibrillation
,”
J. Cardiovasc. Electrophysiol.
,
15
(
4
), pp.
387
393
.10.1046/j.1540-8167.2004.03515.x
31.
Bazilevs
,
Y.
,
Gohean
,
J.
,
Hughes
,
T.
,
Moser
,
R.
, and
Zhang
,
Y.
,
2009
, “
Patient-Specific Isogeometric Fluid–Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3534
3550
.10.1016/j.cma.2009.04.015
32.
Malossi
,
C.
, and
Deparis
,
S.
,
2009
, “
Lifev Development Guidelines
,” .
33.
Roelandt
,
J.
, and
Pozzoli
,
M.
,
2001
, “
On-Invasive Assessment of Left Ventricular Diastolic (Dys) Function and Filling Pressure
,”
Thoraxcentre J.
,
13
(
2
), pp.
30
37
.
You do not currently have access to this content.