The cervix is essential to a healthy pregnancy as it must bear the increasing load caused by the growing fetus. Preterm birth is suspected to be caused by the premature softening and mechanical failure of the cervix. The objective of this paper is to measure the anisotropic mechanical properties of human cervical tissue using indentation and video extensometry. The human cervix is a layered structure, where its thick stromal core contains preferentially aligned collagen fibers embedded in a soft ground substance. The fiber composite nature of the tissue provides resistance to the complex three-dimensional loading environment of pregnancy. In this work, we detail an indentation mechanical test to obtain the force and deformation response during loading which closely matches in vivo conditions. We postulate a constitutive material model to describe the equilibrium material behavior to ramp-hold indentation, and we use an inverse finite element method based on genetic algorithm (GA) optimization to determine best-fit material parameters. We report the material properties of human cervical slices taken at different anatomical locations from women of different obstetric backgrounds. In this cohort of patients, the anterior internal os (the area where the cervix meets the uterus) of the cervix is stiffer than the anterior external os (the area closest to the vagina). The anatomic anterior and posterior quadrants of cervical tissue are more anisotropic than the left and right quadrants. There is no significant difference in material properties between samples of different parities (number of pregnancies reaching viable gestation age).

References

References
1.
Myers
,
K. M.
,
Feltovich
,
H.
,
Mazza
,
E.
,
Vink
,
J.
,
Bajka
,
M.
,
Wapner
,
R. J.
,
Hall
,
T. J.
, and
House
,
M.
,
2015
, “
The Mechanical Role of the Cervix in Pregnancy
,”
J. Biomech.
,
48
(
9
), pp.
1511
1523
.
2.
Feltovich
,
H.
,
Hall
,
T.
, and
Berghella
,
V.
,
2012
, “
Beyond Cervical Length: Emerging Technologies for Assessing the Pregnant Cervix
,”
Am. J. Obstet. Gynecol.
,
207
(
5
), pp.
345
354
.
3.
Vink
,
J.
, and
Feltovich
,
H.
,
2016
, “
Cervical Etiology of Spontaneous Preterm Birth
,”
Semin. Fetal Neonat. Med.
,
21
(
2
), pp.
106
112
.
4.
WHO
,
2018
, “
World Health Organization Fact Sheet No. 363
,” World Health Organization, accessed Dec. 19, https://www.who.int/news-room/fact-sheets/detail/preterm-birth
5.
Bauer
,
M.
,
Mazza
,
E.
,
Nava
,
A.
,
Zeck
,
W.
,
Eder
,
M.
,
Bajka
,
M.
,
Cacho
,
F.
,
Lang
,
U.
, and
Holzapfel
,
G. A.
,
2007
, “
In Vivo Characterization of the Mechanics of Human Uterine Cervices
,”
Ann. N. Y. Acad. Sci.
,
1101
(
1
), pp.
186
202
.
6.
Yao
,
W.
,
Gan
,
Y.
,
Myers
,
K. M.
,
Vink
,
J. Y.
,
Wapner
,
R. J.
, and
Hendon
,
C. P.
,
2016
, “
Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women
,”
PLoS One
,
11
(
11
), p.
e0166709
.
7.
Zork
,
N. M.
,
Myers
,
K. M.
,
Yoshida
,
K.
,
Cremers
,
S.
,
Jiang
,
H.
,
Ananth
,
C. V.
,
Wapner
,
R. J.
,
Kitajewski
,
J.
, and
Vink
,
J.
,
2014
, “
A Systematic Evaluation of Collagen Cross-Links in the Human Cervix
,”
Am. J. Obstet. Gynecol.
,
212
(
3
), pp.
1
8
.
8.
House
,
M.
,
Kaplan
,
D.
, and
Socrate
,
S.
,
2009
, “
Relationships Between Mechanical Properties and Extracellular Matrix Constituents of the Cervical Stroma During Pregnancy
,”
Semin. Perinatol.
,
33
(
5
), pp.
300
307
.
9.
Vink
,
J. Y.
,
Qin
,
S.
,
Brock
,
C. O.
,
Zork
,
N. M.
,
Feltovich
,
H. M.
,
Chen
,
X.
,
Urie
,
P.
,
Myers
,
K. M.
,
Hall
,
T. J.
,
Wapner
,
R.
,
Kitajewski
,
J. K.
,
Shawber
,
C. J.
, and
Gallos
,
G.
,
2016
, “
A New Paradigm for the Role of Smooth Muscle Cells in the Human Cervix
,”
Am. J. Obstet. Gynecol.
,
215
(
4
), pp.
478.e1
478.e11
.
10.
Aspden
,
R.
,
1988
, “
Collagen Organization in the Cervix and Its Relation to Mechanical Function
,”
Collagen Relat. Res.
,
8
(
2
), pp.
103
112
.
11.
Weiss
,
S.
,
Jaermann
,
T.
,
Schmid
,
P.
,
Staempfli
,
P.
,
Boesiger
,
P.
,
Niederer
,
P.
,
Caduff
,
R.
, and
Bajka
,
M.
,
2006
, “
Three-Dimensional Fiber Architecture of the Nonpregnant Human Uterus Determined Ex Vivo Using Magnetic Resonance Diffusion Tensor Imaging
,”
Anat. Rec., Part A
,
288
(
1
), pp.
84
90
.
12.
Fernandez
,
M.
,
House
,
M.
,
Jambawalikar
,
S.
,
Zork
,
N.
,
Vink
,
J.
,
Wapner
,
R.
, and
Myers
,
K.
,
2015
, “
Investigating the Mechanical Function of the Cervix During Pregnancy Using Finite Element Models Derived From High-Resolution 3D MRI
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
4
), pp.
404
417
.
13.
Myers
,
K.
,
Socrate
,
S.
,
Paskaleva
,
A.
, and
House
,
M.
,
2010
, “
A Study of the Anisotropy and Tension/Compression Behavior of Human Cervical Tissue
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021003
.
14.
Myers
,
K.
,
Paskaleva
,
A.
,
House
,
M.
, and
Socrate
,
S.
,
2008
, “
Mechanical and Biochemical Properties of Human Cervical Tissue
,”
Acta Biomater.
,
4
(
1
), pp.
104
116
.
15.
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
,
Wapner
,
R.
,
Ananth
,
C.
,
Oyen
,
M.
, and
Myers
,
K.
,
2014
, “
Measuring the Compressive Viscoelastic Mechanical Properties of Human Cervical Tissue Using Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
18
26
.
16.
Myers
,
K. M.
,
Hendon
,
C. P.
,
Gan
,
Y.
,
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
, and
Wapner
,
R. J.
,
2015
, “
A Continuous Fiber Distribution Material Model for Human Cervical Tissue
,”
J Biomech
,
48
(
9
), pp.
1533
1540
.
17.
Westervelt
,
A. R.
,
Fernandez
,
M.
,
House
,
M.
,
Vink
,
J.
,
Nhan-Chang
,
C.-L.
,
Wapner
,
R.
, and
Myers
,
K. M.
,
2017
, “
A Parameterized Ultrasound-Based Finite Element Analysis of the Mechanical Environment of Pregnancy
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051004
.
18.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Namani
,
R.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2013
, “
Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
117
132
.
19.
Zhang
,
M.
,
Zheng
,
Y.
, and
Mak
,
A. F.
,
1997
, “
Estimating the Effective Young's Modulus of Soft Tissues From Indentation Testsnonlinear Finite Element Analysis of Effects of Friction and Large Deformation
,”
Med. Eng. Phys.
,
19
(
6
), pp.
512
517
.
20.
Namani
,
R.
,
2012
, “
Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation
,”
ASME J. Biomech. Eng.
,
134
(
6
), p.
061004
.
21.
Elkin
,
B. S.
, and
Morrison
,
B.
,
2013
, “
Viscoelastic Properties of the P17 and Adult Rat Brain From Indentation in the Coronal Plane
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
114507
.
22.
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics and Kinematics of Soft Tissue Under Indentation Are Determined by the Degree of Initial Collagen Fiber Alignment
,”
J. Mecha. Behav. Biomed. Mater.
,
13
, pp.
25
35
.
23.
Han
,
L.
,
Noble
,
J. A.
, and
Burcher
,
M.
,
2003
, “
A Novel Ultrasound Indentation System for Measuring Biomechanical Properties of In Vivo Soft Tissue
,”
Ultrasound Med. Biol.
,
29
(
6
), pp.
813
823
.
24.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
25.
Saga
,
M.
, and
Vasko
,
M.
,
2007
, “
Solution of Mechanical Systems With Uncertainty Parameters Using IFEA
,”
Communications
,
11
(
2
), pp.
19
27
.http://www.utc.sk/komunikacie/archiv/2009/2/2_2009en.pdf
26.
Chawla
,
A.
,
Mukherjee
,
S.
, and
Karthikeyan
,
B.
,
2009
, “
Characterization of Human Passive Muscles for Impact Loads Using Genetic Algorithm and Inverse Finite Element Methods
,”
Biomech. Model. Mechanobiol.
,
8
(
1
), pp.
67
76
.
27.
He
,
Y.
,
Guo
,
D.
, and
Chu
,
F.
,
2001
, “
Using Genetic Algorithms and Finite Element Methods to Detect Shaft Crack for Rotor-Bearing System
,”
Math. Comput. Simul.
,
57
(
1–2
), pp.
95
108
.
28.
Tadepalli
,
S. C.
,
Erdemir
,
A.
, and
Cavanagh
,
P. R.
,
2011
, “
Comparison of Hexahedral and Tetrahedral Elements in Finite Element Analysis of the Foot and Footwear
,”
J. Biomech.
,
44
(
12
), pp.
2337
2343
.
29.
Myers
,
K.
, and
Ateshian
,
G.
,
2014
, “
Interstitial Growth and Remodeling of Biological Tissues: Tissue Composition as State Variables
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
544
556
.
30.
Gasser
,
T.
,
Ogden
,
R.
, and
Holzapfel
,
G.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
You do not currently have access to this content.