Eardrum or tympanic membrane (TM) is a multilayer soft tissue membrane located at the end of the ear canal to receive sound pressure and transport the sound into the middle ear and cochlea. Recent studies reported that the TM microstructure and mechanical properties varied after the ear was exposed to blast overpressure. However, the impact of such biomechanical changes of the TM on its movement for sound transmission has not been investigated. This paper reports the full-field surface motion of the human TM using the scanning laser Doppler vibrometry in human temporal bones under normal and postblast conditions. An increase of the TM displacement after blast exposure was observed in the posterior region of the TM in four temporal bone samples at the frequencies between 3 and 4 kHz. A finite element model of human TM with multilayer microstructure and orthogonal fiber network was created to simulate the TM damaged by blast waves. The consistency between the experimental data and the model-derived TM surface motion suggests that the tissue injuries were resulted from a combination of mechanical property change and regional discontinuity of collagen fibers. This study provides the evidences of surface motion changes of the TM damaged by blast waves and possible fiber damage locations.

References

References
1.
Cave
,
K. M.
,
Cornish
,
E. M.
, and
Chandler
,
D. W.
,
2007
, “
Blast Injury of the Ear: Clinical Update From the Global War on Terror
,”
J. Mil. Med.
,
172
(
7
), pp.
726
730
.
2.
Dougherty
,
A. L.
,
MacGregor
,
A. J.
,
Han
,
P. P.
,
Viirre
,
E.
,
Heltemes
,
K. J.
, and
Galarneau
,
M. R.
,
2013
, “
Blast-Related Ear Injuries Among U.S. Military Personnel
,”
J. Rehabil. Res. Dev.
,
50
(
6
), pp.
893
904
.
3.
Cho
,
S.-I.
,
Gao
,
S. S.
,
Xia
,
A.
,
Wang
,
R.
,
Salles
,
F. T.
,
Raphael
,
P. D.
,
Abaya
,
H.
,
Wachtel
,
J.
,
Baek
,
J.
,
Jacobs
,
D.
,
Rasband
,
M. N.
, and
Oghalai
,
J. S.
,
2013
, “
Mechanisms of Hearing Loss After Blast Injury to the Ear
,”
PLoS One
,
8
(
7
), p.
e67618
.
4.
Gan
,
R. Z.
,
Nakmali
,
D.
,
Ji
,
X. D.
,
Leckness
,
K.
, and
Yokell
,
Z.
,
2016
, “
Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform—A Study in Chinchillas
,”
Hear. Res.
,
340
, pp.
25
34
.
5.
Keller
,
M.
,
Sload
,
R.
,
Wilson
,
J.
,
Greene
,
H.
,
Han
,
P.
, and
Wise
,
S.
,
2017
, “
Tympanoplasty Following Blast Injury
,”
Otolaryngol. Head Neck Surg.
,
157
(
6
), pp.
1025
1033
.
6.
Lim
,
D. J.
,
1995
, “
Structure and Function of the Tympanic Membrane: A Review
,”
Acta Otorhinolaryngol.
,
49
(
2
), pp.
101
115
.https://www.ncbi.nlm.nih.gov/pubmed/7610903
7.
Volandri
,
G.
,
Di Puccio
,
F.
,
Forte
,
P.
, and
Carmignani
,
C.
,
2011
, “
Biomechanics of the Tympanic Membrane
,”
J. Biomech.
,
44
(
7
), pp.
1219
1236
.
8.
Luo
,
H.
,
Dai
,
C.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2009
, “
Measurement of Young's Modulus of Human Tympanic Membrane at High Strain Rates
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
064501
.
9.
Luo
,
H.
,
Jiang
,
S.
,
Nakmali
,
D. U.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2016
, “
Mechanical Properties of a Human Eardrum at High Strain Rates After Exposure to Blast Waves
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
59
73
.
10.
Engles
,
W. G.
,
Wang
,
X.
, and
Gan
,
R. Z.
,
2017
, “
Dynamic Properties of Human Tympanic Membrane After Exposure to Blast Waves
,”
Ann. Biomed. Eng.
,
45
(
10
), pp.
2383
2394
.
11.
Rosowski
,
J. J.
,
Cheng
,
J. T.
,
Ravicz
,
M. E.
,
Hulli
,
N.
,
Hernandez-Montes
,
M.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2009
, “
Computer-Assisted Time-Averaged Holograms of the Motion of the Surface of the Mammalian Tympanic Membrane With Sound Stimuli of 0.4–25 KHz
,”
Hear. Res.
,
253
(
1–2
), pp.
83
96
.
12.
Wada
,
H.
,
Ando
,
M.
,
Takeuchi
,
M.
,
Sugawara
,
H.
,
Koike
,
T.
,
Kobayashi
,
T.
,
Hozawa
,
K.
,
Gemma
,
T.
, and
Nara
,
M.
,
2002
, “
Vibration Measurement of the Tympanic Membrane of Guinea Pig Temporal Bones Using Time-Averaged Speckle Pattern Interferometry
,”
J. Acoust. Soc. Am.
,
111
(
5
), pp.
2189
2199
.
13.
Cheng
,
J. T.
,
Aarnisalo
,
A. A.
,
Harrington
,
E.
,
Hernandez-Montes
,
M. D. S.
,
Furlong
,
C.
,
Merchant
,
S. N.
, and
Rosowski
,
J. J.
,
2010
, “
Motion of the Surface of the Human Tympanic Membrane Measured With Stroboscopic Holography
,”
Hear. Res.
,
263
(
1–2
), pp.
66
77
.
14.
Burkhardt
,
A.
,
Kirsten
,
L.
,
Bornitz
,
M.
,
Zahnert
,
T.
, and
Koch
,
E.
,
2014
, “
Investigation of the Human Tympanic Membrane Oscillation Ex Vivo by Doppler Optical Coherence Tomography
,”
J. Biophotonics
,
7
(
6
), pp.
434
441
.
15.
Zhang
,
X.
,
Guan
,
X.
,
Nakmali
,
D.
,
Palan
,
V.
,
Pineda
,
M.
, and
Gan
,
R. Z.
,
2014
, “
Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid
,”
J. Assoc. Res. Otolaryngol.
,
15
(
6
), pp.
867
881
.
16.
Wang
,
X.
, and
Gan
,
R. Z.
,
2018
, “
Surface Motion of Tympanic Membrane in a Chinchilla Model of Acute Otitis Media
,”
J. Assoc. Res. Otolaryngol.
,
19
(
6
), pp.
619
635
.
17.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2011
, “
A Comprehensive Model of Human Ear for Analysis of Implantable Hearing Devices
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
3024
3027
.
18.
Gan
,
R. Z.
,
Leckness
,
K.
,
Nakmali
,
D.
, and
Ji
,
X. D.
,
2018
, “
Biomechanical Measurement and Modeling of Human Eardrum Injury in Relation to Blast Wave Direction
,”
Mil. Med.
,
183
(
Suppl. 1
), pp.
245
251
.
19.
Kingery
,
C. N.
, and
Pannill
,
B. F.
,
1964
, “
Peak Overpressure Vs Scaled Distance for TNT Surface Bursts (Hemispherical Charges
),” Army Ballistic Research Lab, Aberdeen Proving Ground, MD, Report No.
BRL-MR-1518
.https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/AD443102.xhtml
20.
Gan
,
R. Z.
,
Zhang
,
X.
, and
Guan
,
X.
,
2011
, “
Modeling Analysis of Biomechanical Changes of Middle Ear and Cochlea in Otitis Media
,”
AIP Conf. Proc.
,
1403
, pp.
539
544
.
21.
Fay
,
J.
,
Puria
,
S.
,
Decraemer
,
W. F.
, and
Steele
,
C.
,
2005
, “
Three Approaches for Estimating the Elastic Modulus of the Tympanic Membrane
,”
J. Biomech.
,
38
(
9
), pp.
1807
1815
.
22.
Gan
,
R. Z.
, and
Wang
,
X.
,
2007
, “
Multifield Coupled Finite Element Analysis for Sound Transmission in Otitis Media With Effusion
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3527
3538
.
23.
Gentil
,
F.
,
Parente
,
M.
,
Martins
,
P.
,
Garbe
,
C.
,
Santos
,
C.
,
Areias
,
B.
,
Branco
,
C.
,
Paço
,
J.
, and
Jorge
,
R. N.
,
2016
, “
Effects of the Fibers Distribution in the Human Eardrum: A Biomechanical Study
,”
J. Biomech.
,
49
(
9
), pp.
1518
1523
.
24.
Tuck-Lee
,
J. P.
,
Pinsky
,
P. M.
,
Steele
,
C. R.
, and
Puria
,
S.
,
2008
, “
Finite Element Modeling of Acousto-Mechanical Coupling in the Cat Middle Ear
,”
J. Acoust. Soc. Am.
,
124
(
1
), pp.
348
362
.
25.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
,
2005
, “
Analysis of Articular Cartilage as a Composite Using Nonlinear Membrane Elements for Collagen Fibrils
,”
Med. Eng. Phys.
,
27
(
10
), pp.
827
835
.
26.
Tiburtius
,
S.
,
Schrof
,
S.
,
Molnár
,
F.
,
Varga
,
P.
,
Peyrin
,
F.
,
Grimal
,
Q.
,
Raum
,
K.
, and
Gerisch
,
A.
,
2014
, “
On the Elastic Properties of Mineralized Turkey Leg Tendon Tissue: Multiscale Model and Experiment
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1003
1023
.
27.
Gibson
,
R. F.
,
2011
,
Principles of Composite Material Mechanics
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
28.
Wenger
,
M. P. E.
,
Bozec
,
L.
,
Horton
,
M. A.
, and
Mesquida
,
P.
,
2007
, “
Mechanical Properties of Collagen Fibrils
,”
Biophys. J.
,
93
(
4
), pp.
1255
1263
.
29.
Wang
,
X.
,
Guan
,
X.
,
Pineda
,
M.
, and
Gan
,
R. Z.
,
2016
, “
Motion of Tympanic Membrane in Guinea Pig Otitis Media Model Measured by Scanning Laser Doppler Vibrometry
,”
Hear. Res.
,
339
, pp.
184
194
.
30.
Kozin
,
E. D.
,
Black
,
N. L.
,
Cheng
,
J. T.
,
Cotler
,
M. J.
,
McKenna
,
M. J.
,
Lee
,
D. J.
,
Lewis
,
J. A.
,
Rosowski
,
J. J.
, and
Remenschneider
,
A. K.
,
2016
, “
Design, Fabrication, and In Vivo Testing of Novel Three-Dimensionally Printed Tympanic Membrane Grafts
,”
Hear. Res.
,
340
, pp.
191
203
.
31.
Cheng
,
J. T.
,
Hamade
,
M.
,
Merchant
,
S. N.
,
Rosowski
,
J. J.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2013
, “
Wave Motion on the Surface of the Human Tympanic Membrane: Holographic Measurement and Modeling Analysis
,”
J. Acoust. Soc. Am.
,
133
(
2
), pp.
918
937
.
32.
Rosowski
,
J.
,
Cheng
,
J.
,
Merchant
,
S.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2011
, “
New Data on the Motion of the Normal and Reconstructed Tympanic Membrane
,”
Otol. Neurotol.
,
32
(
9
), pp.
1559
1567
.
33.
Rosowski
,
J. J.
,
Dobrev
,
I.
,
Khaleghi
,
M.
,
Lu
,
W.
,
Cheng
,
J. T.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2013
, “
Measurements of Three-Dimensional Shape and Sound-Induced Motion of the Chinchilla Tympanic Membrane
,”
Hear. Res.
,
301
, pp.
44
52
.
34.
Patterson
,
J. H.
, and
Hamernik
,
R. P.
,
1997
, “
Blast Overpressure Induced Structural and Functional Changes in the Auditory System
,”
Toxicology
,
121
(
1
), pp.
29
40
.
35.
Liang
,
J.
,
Yokell
,
Z. A.
,
Nakmaili
,
D. U.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2017
, “
The Effect of Blast Overpressure on the Mechanical Properties of a Chinchilla Tympanic Membrane
,”
Hear. Res.
,
354
, pp.
48
55
.
36.
Race
,
N.
,
Lai
,
J.
,
Shi
,
R.
, and
Bartlett
,
E. L.
,
2017
, “
Differences in Post-Injury Auditory System Pathophysiology After Mild Blast and Non-Blast Acute Acoustic Trauma
,”
J. Neurophysiol.
,
118
(
2
), pp.
782
799
.
37.
Bohne
,
B. A.
,
Kimlinger
,
M.
, and
Harding
,
G. W.
,
2017
, “
Time Course of Organ of Corti Degeneration After Noise Exposure
,”
Hear. Res.
,
344
, pp.
158
169
.
38.
Guan
,
X.
,
Jiang
,
S.
,
Seale
,
T. W.
,
Hitt
,
B. M.
, and
Gan
,
R. Z.
,
2015
, “
Morphological Changes in the Tympanic Membrane Associated With Haemophilus Influenzae-Induced Acute Otitis Media in the Chinchilla
,”
Int. J. Pediatr. Otorhinolaryngol.
,
79
(
9
), pp.
1462
1471
.
You do not currently have access to this content.