Incompressibility implies that a tissue preserves its volume regardless of the loading conditions. Although this assumption is well-established in arterial wall mechanics, it is assumed to apply for the venous wall without validation. The objective of this study is to test whether the incompressibility assumption holds for the venous wall. To investigate the vascular wall volume under different loading conditions, inflation-extension testing protocol was used in conjunction with intravascular ultrasound (IVUS) in both common iliac arteries (n = 6 swine) and common iliac veins (n = 9 dogs). Use of IVUS allows direct visualizations of lumen dimensions simultaneous with direct measurements of outer dimensions during loading. The arterial tissue was confirmed to preserve volume during various load conditions (p = 0.11) consistent with the literature, while the venous tissue was found to lose volume (about 35%) under loaded conditions (p < 0.05). Using a novel methodology, this study shows the incompressibility assumption does not hold for the venous wall especially at higher pressures, which suggests that there may be fluid loss through the vein wall during loading. This has important implications for coupling of fluid transport across the wall and biomechanics of the wall in healthy and diseased conditions.

References

References
1.
Attinger
,
E. O.
,
1969
, “
Wall Properties of Veins
,”
IEEE Trans. Biomed. Eng.
,
4
, pp.
253
261
.
2.
Sokolis
,
D. P.
,
2008
, “
Passive Mechanical Properties and Constitutive Modeling of Blood Vessels in Relation to Microstructure
,”
Med. Biol. Eng. Comput.
,
46
(
12
), pp.
1187
1199
.
3.
Chuong
,
C.
, and
Fung
,
Y.
,
1984
, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiment
,”
J. Biomech.
,
17
(
1
), pp.
35
40
.
4.
Fung
,
Y.
,
1984
, “
Structure and Stress-Strain Relationship of Soft Tissue
,”
Am. Zool.
,
24
(
1
), pp.
13
22
.
5.
Fung
,
Y.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
237
(
5
), pp.
H620
H631
.
6.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
, New York.
7.
Kassab
,
G. S.
,
2006
, “
Biomechanics of the Cardiovascular System: The Aorta as an Illustratory Example
,”
J. R. Soc., Interface
,
3
(
11
), pp.
719
740
.
8.
Watts
,
S. W.
,
Rondelli
,
C.
,
Thakali
,
K.
,
Li
,
X.
,
Uhal
,
B.
,
Pervaiz
,
M. H.
,
Watson
,
R. E.
, and
Fink
,
G. D.
,
2007
, “
Morphological and Biochemical Characterization of Remodeling in Aorta and Vena Cava of Doca-Salt Hypertensive Rats
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
292
(
5
), pp.
H2438
H2448
.
9.
Desch
,
G. W.
, and
Weizsäcker
,
H. W.
,
2007
, “
A Model for Passive Elastic Properties of Rat Vena Cave
,”
J. Biomech.
,
40
(
14
), pp.
3130
3145
.
10.
Dobrin
,
P. B.
,
Littooy
,
F. N.
,
Golan
,
J.
,
Blakeman
,
B.
, and
Fareed
,
J.
,
2006
, “
Mechanical and Histologic Changes in Canine Vein Grafts
,”
J. Surg. Res.
,
44
, pp.
740
746
.
11.
Hayashi
,
K.
, and
Naiki
,
T.
,
2009
, “
Adaptation and Remodeling of Vascular Wall; Biomechanical Response to Hypertension
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
3
19
.
12.
Wesly
,
R.
,
Vaishnav
,
R. N.
,
Fuchs
,
J.
,
Patel
,
D. J.
, and
Greenfield
,
J.
,
1975
, “
Static Linear and Nonlinear Elastic Properties of Normal and Arterialized Venous Tissue in Dog and Man
,”
Circ. Res.
,
37
(
4
), pp.
509
520
.
13.
Dilley
,
R. J.
,
McGeachie
,
J. K.
, and
Prendergast
,
F. J.
,
1988
, “
A Review of the Histologic Changes in Vein-to-Artery Grafts, With Particular Reference to Intimal Hyperplasia
,”
Arch. Surg.
,
123
(
6
), pp.
691
696
.
14.
Stooker
,
W.
,
Gok
,
M.
,
Sipkema
,
P.
,
Niessen
,
H. W.
,
Baidoshvili
,
A.
,
Westerhof
,
N.
,
Jansen
,
E. K.
,
Wildevuur
,
C. R.
, and
Eijsman
,
L.
,
2003
, “
Pressure-Diameter Relationship in the Human Greater Saphenous Vein
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1533
1538
.
15.
Vito
,
R. P.
, and
Dixon
,
S. A.
,
2003
, “
Blood Vessel Constitutive Models: 1995–2002
,”
Annu. Rev. Biomed. Eng.
,
5
(
1
), pp.
413
439
.
16.
Brossollet
,
L. J.
, and
Vito
,
R. P.
,
1995
, “
An Alternate Formation of Blood Vessel Mechanics and the Meaning of the In Vivo Property
,”
J. Biomech.
,
28
(
6
), pp.
679
687
.
17.
Glagov
,
S.
,
Vito
,
R.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
,
1992
, “
Micro-Architecture and Composition of Artery Walls: Relationship to Location, Diameter and the Distribution of Mechanical Stress
,”
J. Hypertens.
,
10
(
6
), pp.
S101
S104
.https://journals.lww.com/jhypertension/Abstract/1992/08001/Micro_architecture_and_composition_of_artery.26.aspx
18.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1/3
), pp.
1
48
.
19.
Liu
,
Y.
,
Zhang
,
W.
, and
Kassab
,
G. S.
,
2008
, “
Effects of Myocardial Constraint on the Passive Mechanical Behaviors of the Coronary Vessel Wall
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
294
(
1
), pp.
H514
H523
.
20.
Liu
,
Y.
,
Wen
,
H.
,
Gorman
,
R. C.
,
Pilla
,
J. J.
,
Gorman
,
J. H.
,
Buckberg
,
G.
,
Teague
,
S. D.
, and
Kassab
,
G. S.
,
2009
, “
Reconstruction of Myocardial Tissue Motion and Strain Fields From Displacement-Encoded MR Imaging
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
297
(
3
), pp.
H1151
H1162
.
21.
Monos
,
E.
,
Kauser
,
K.
,
Contney
,
S.
,
Cowley
,
A.
, Jr.
, and
Stekiel
,
W.
,
1991
, “
Biomechanical and Electrical Responses of Normal and Hypertensive Veins to Short-Term Pressure Increases
,”
Cellular Aspects of Hypertension
, Springer, NY, pp.
51
57
.
22.
Monos
,
E.
,
Lóránt
,
M.
,
Dörnyei
,
G.
,
Bérczi
,
V.
, and
Nádasy
,
G.
,
2003
, “
Long-Term Adaptation Mechanisms in Extremity Veins Supporting Orthostatic Tolerance
,”
Physiology
,
18
(5), pp.
210
214
.
23.
Sassani
,
S. G.
,
Theofani
,
A.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2013
, “
Time-Course of Venous Wall Biomechanical Adaptation in Pressure and Flow-Overload: Assessment by a Microstructure-Based Material Model
,”
J. Biomech.
,
46
(
14
), pp.
2451
2462
.
24.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids: A Continuum Mechanical Framework
,”
Math. Mech. Solids
,
14
(
5
), pp.
474
489
.
25.
Kritharis
,
E. P.
,
Kakisis
,
J. D.
,
Giagini
,
A. T.
,
Manos
,
T.
,
Stergiopulos
,
N.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2010
, “
Biomechanical, Morphological and Zero-Stress State Characterization of Jugular Vein Remodeling in Arteriovenous Fistulas for Hemodialysis
,”
Biorheology
,
47
(
5–6
), pp.
297
319
.
26.
Rezakhaniha
,
R.
, and
Stergiopulso
,
N.
, “
A Structural Model of the Venous Wall Considering Elastin Anisotropy
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031017
.
27.
Weizsäcker
,
H. W.
,
1988
, “
Passive Elastic Properties of the Rat Abdominal Vena Cava
,”
Pflűgers Archiv
,
412
(
1–2
), pp.
147
154
.
28.
Brass
,
M.
,
2014
, “
Biomechanical and Morphological Characterization of Common Iliac Vein Remodeling: Effects of Venous Reflux and Hypertension
,” MS dissertation, IUPUI, Indianapolis, IN.
29.
Brass
,
M.
,
Berwick
,
Z. C.
,
Zhao
,
X.
,
Chen
,
H.
,
Krieger
,
J.
,
Chambers
,
S.
, and
Kassab
,
G. S.
,
2015
, “
Remodeling of Canine Common Iliac Vein in Response to Venous Reflux and Hypertension
,”
J. Vasc. Surg.: Venous Lymphat. Dis.
,
3
, pp.
303
311
.
30.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
(
1
), pp.
61
68
.
31.
Chuong
,
C.
, and
Fung
,
Y.
,
1986
, “
Residual Stress in Arteries
,”
Frontiers in Biomechanics
,
Springer
,
New York
, pp.
117
129
.
32.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. F.
,
2004
,
Transport Phenomena in Biological Systems
,
Pearson/Prentice Hall
,
Upper Saddle River, NY
.
33.
Sarelius
,
I. H.
,
Kuebel
,
J. M.
,
Wang
,
J.
, and
Huxley
,
V. H.
,
2006
, “
Macromolecule Permeability of In Situ and Excised Rodent Skeletal Muscle Arterioles and Venules
,”
Am. J. Physiol.
,
290
(
1
), pp.
H474
H480
.
34.
Cox
,
R. H.
, and
Detweiler
,
D. K.
,
1988
, “
Comparison of Arterial Wall Properties in Young and Old Racing Greyhounds
,”
Mech. Ageing Dev.
,
44
(
1
), pp.
51
67
.
35.
Monos
,
E.
,
Contney
,
S. J.
,
Cowley
,
A.
, and
Stekiel
,
W. J.
,
1989
, “
Effect of Long-Term Tilt on Mechanical and Electrical Properties of Rat Saphenous Vein
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
256
(
4
), pp.
H1185
H1191
.
36.
Kassab
,
G. S.
,
Lin
,
D.
, and
Fung
,
Y. C.
,
1994
, “
Morphometry of the Pig Coronary Venous System
,”
Am. J. Physiol. Heart Circ. Physiol.
,
267
(
6 Pt 2
), pp.
H2100
H2113
.
37.
Boutouyrie
,
P.
,
Bézie
,
Y.
,
Lacolley
,
P.
,
Challande
,
P.
,
Chamiot-Clerc
,
P.
,
Benetos
,
A.
,
Renaud de la Faverie
,
J. F.
,
Safar
,
M.
, and
Laurent
,
S.
,
1997
, “
In Vivo/In Vitro Comparison of Rat Abdominal Aorta Wall Viscosity Influence of Endothelial Function
,”
Aeterioscler., Thromb., Vasc. Biol.
,
17
(
7
), pp.
1346
1355
.
38.
Choy
,
J. S.
, and
Kassab
,
G. S.
,
2006
, “
Non-Uniformity of Axial and Circumferential Remodeling of Large Coronary Veins in Response to Ligation
,”
J. Biomech.
,
39
, p.
S316
.
39.
Masson
,
I.
,
Boutouyrie
,
P.
,
Laurent
,
S.
,
Humphrey
,
J.
, and
Zidi
,
M.
,
2008
, “
Characterization of Arterial Wall Mechanical Behavior and Stresses From Human Clinical Data
,”
J. Biomech.
,
41
(
12
), pp.
2618
2627
.
40.
Kassab
,
G. S.
,
2004
, “
Y.C. “Bert” Fung: The Father of Modern Biomechanics
,”
Mech. Chem. Biosystems
,
1
(1)
, pp. 5–22.https://www.researchgate.net/publication/6999880_YC_Bert_Fung_the_father_of_modern_biomechanics
You do not currently have access to this content.