Medical image resolution has been a serious limitation in plaque progression research. A modeling approach combining intravascular ultrasound (IVUS) and optical coherence tomography (OCT) was introduced and patient follow-up IVUS and OCT data were acquired to construct three-dimensional (3D) coronary models for plaque progression investigations. Baseline and follow-up in vivo IVUS and OCT coronary plaque data were acquired from one patient with 105 matched slices selected for model construction. 3D fluid–structure interaction (FSI) models based on IVUS and OCT data (denoted as IVUS + OCT model) were constructed to obtain stress/strain and wall shear stress (WSS) for plaque progression prediction. IVUS-based IVUS50 and IVUS200 models were constructed for comparison with cap thickness set as 50 and 200 μm, respectively. Lumen area increase (LAI), plaque area increase (PAI), and plaque burden increase (PBI) were chosen to measure plaque progression. The least squares support vector machine (LS-SVM) method was employed for plaque progression prediction using 19 risk factors. For IVUS + OCT model with LAI, PAI, and PBI, the best single predictor was plaque strain, local plaque stress, and minimal cap thickness, with prediction accuracy as 0.766, 0.838, and 0.890, respectively; the prediction accuracy using best combinations of 19 factors was 0.911, 0.881, and 0.905, respectively. Compared to IVUS + OCT model, IVUS50, and IVUS200 models had errors ranging from 1% to 66.5% in quantifying cap thickness, stress, strain and prediction accuracies. WSS showed relatively lower prediction accuracy compared to other predictors in all nine prediction studies.

References

1.
Virmani
,
R.
,
Ladich
,
E. R.
,
Burke
,
A. P.
, and
Kolodgie
,
F. D.
,
2006
, “
Histopathology of Carotid Atherosclerotic Disease
,”
Neurosurgery
,
59
(
Suppl. 5
), p.
S3-219
.
2.
Brown
,
A. J.
,
Obaid
,
D. R.
,
Costopoulos
,
C.
,
Parker
,
R. A.
,
Calvert
,
P. A.
,
Teng
,
Z.
,
Hoole
,
S. P.
,
West
,
N. E.
,
Goddard
,
M.
, and
Bennett
,
M. R.
,
2015
, “
Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma
,”
Circ.: Cardiovasc. Imaging
,
8
(
10
), p.
e003487
.
3.
Guo
,
X.
,
Giddens
,
D. P.
,
Molony
,
D.
,
Yang
,
C.
,
Samady
,
H.
,
Zheng
,
J.
,
Mintz
,
G. S.
,
Maehara
,
A.
,
Wang
,
L.
,
Pei
,
X.
,
Li
,
Z. Y.
, and
Tang
,
D.
,
2018
, “
Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach
,”
ASME J. Biomech. Eng.
,
140
(
4
), p.
041005
.
4.
Burke
,
A. P.
,
Kolodgie
,
F. D.
,
Farb
,
A.
,
Weber
,
D.
, and
Virmani
,
R.
,
2002
, “
Morphological Predictors of Arterial Remodeling in Coronary Atherosclerosis
,”
Circulation
,
105
(
3
), pp.
297
303
.
5.
Clarkson
,
T. B.
,
Prichard
,
R. W.
,
Morgan
,
T. M.
,
Petrick
,
G. S.
, and
Klein
,
K. P.
,
1994
, “
Remodeling of Coronary Arteries in Human and Nonhuman Primates
,”
JAMA
,
271
(
4
), pp.
289
294
.
6.
Glagov
,
S.
,
Weisenberg
,
E.
,
Zarins
,
C. K.
,
Stankunavicius
,
R.
, and
Kolettis
,
G. J.
,
1987
, “
Compensatory Enlargement of Human Atherosclerotic Coronary Arteries
,”
New Engl. J. Med.
,
316
(
22
), pp.
1371
1375
.
7.
Zarins
,
C. K.
,
Weisenberg
,
E.
,
Kolettis
,
G.
,
Stankunavicius
,
R.
, and
Glagov
,
S.
,
1988
, “
Differential Enlargement of Artery Segments in Response to Enlarging Atherosclerotic Plaques
,”
J. Vasc. Surg.
,
7
(
3
), pp.
386
394
.
8.
Gerber
,
T. C.
,
Erbel
,
R.
,
Gorge
,
G.
,
Ge
,
J.
,
Rupprecht
,
H. J.
, and
Meyer
,
J.
,
1994
, “
Extent of Atherosclerosis and Remodeling of the Left Main Coronary Artery Determined by Intravascular Ultrasound
,”
Am. J. Cardiol.
,
73
(
9
), pp.
666
671
.
9.
Mintz
,
G. S.
,
Kent
,
K. M.
,
Pichard
,
A. D.
,
Satler
,
L. F.
,
Popma
,
J. J.
, and
Leon
,
M. B.
,
1997
, “
Contribution of Inadequate Arterial Remodeling to the Development of Focal Coronary Artery Stenoses: An Intravascular Ultrasound Study
,”
Circulation
,
95
(
7
), pp.
1791
1798
.
10.
Nakamura
,
Y.
,
Takemori
,
H.
,
Shiraishi
,
K.
,
Inoki
,
I.
,
Sakagami
,
M.
,
Shimakura
,
A.
,
Usuda
,
K.
,
Kubota
,
K.
,
Takata
,
S.
, and
Kobayashi
,
K. I.
,
1996
, “
Compensatory Enlargement of Angiographically Normal Coronary Segments in Patients With Coronary Artery Disease: In Vivo Documentation Using Intravascular Ultrasound
,”
Angiology
,
47
(
8
), pp.
775
781
.
11.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeterioscler., Thromb., Vasc. Biol.
,
5
(
3
), pp.
293
302
.
12.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.
13.
Spence
,
J. D.
,
Eliasziw
,
M.
,
DiCicco
,
M.
,
Hackam
,
D. G.
,
Galil
,
R.
, and
Lohmann
,
T.
,
2002
, “
Carotid Plaque Area: A Tool for Targeting and Evaluating Vascular Preventive Therapy
,”
Stroke
,
33
(
12
), pp.
2916
2922
.
14.
Stone
,
G. W.
,
Maehara
,
A.
,
Lansky
,
A. J.
,
de Bruyne
,
B.
,
Cristea
,
E.
,
Mintz
,
G. S.
,
Mehran
,
R.
,
McPherson
,
J.
,
Farhat
,
N.
,
Marso
,
S. P.
,
Parise
,
H.
,
Templin
,
B.
,
White
,
R.
,
Zhang
,
Z.
, and
Serruys
,
P. W.
,
2011
, “
A Prospective Natural-History Study of Coronary Atherosclerosis
,”
New Engl. J. Med.
,
364
(
3
), pp.
226
235
.
15.
Corban
,
M. T.
,
Eshtehardi
,
P.
,
Suo
,
J.
,
McDaniel
,
M. C.
,
Timmins
,
L. H.
,
Rassoul-Arzrumly
,
E.
,
Maynard
,
C.
,
Mekonnen
,
G.
,
King
,
S.
,
Quyyumi
,
A. A.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2014
, “
Combination of Plaque Burden, Wall Shear Stress, and Plaque Phenotype Has Incremental Value for Prediction of Coronary Atherosclerotic Plaque Progression and Vulnerability
,”
Atherosclerosis
,
232
(
2
), pp.
271
276
.
16.
Stone
,
P. H.
,
Saito
,
S.
,
Takahashi
,
S.
,
Makita
,
Y.
,
Nakamura
,
S.
,
Kawasaki
,
T.
,
Takahashi
,
A.
,
Katsuki
,
T.
,
Nakamura
,
S.
,
Namiki
,
A.
,
Hirohata
,
A.
,
Matsumura
,
T.
,
Yamazaki
,
S.
,
Yokoi
,
H.
,
Tanaka
,
S.
,
Otsuji
,
S.
,
Yoshimach
,
F.
,
Honye
,
J.
,
Harwood
,
D.
,
Reitman
,
M.
,
Coskun
,
A. U.
,
Papafaklis
,
M. I.
, and
Feldman
,
C. L.
,
2012
, “
Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics: The Prediction Study
,”
Circulation
,
126
(
2
), pp.
172
181
.
17.
Maurice
,
R. L.
,
Ohayon
,
J.
,
Finet
,
G.
, and
Cloutier
,
G.
,
2004
, “
Adapting the Lagrangian Speckle Model Estimator for Endovascular Elastography: Theory and Validation With Simulated Radio-Frequency Data
,”
J. Acoust. Soc. Am.
,
116
(
2
), pp.
1276
1286
.
18.
Tang
,
D.
,
Kamm
,
R. D.
,
Yang
,
C.
,
Zheng
,
J.
,
Canton
,
G.
,
Bach
,
R.
,
Huang
,
X.
,
Hatsukami
,
T. S.
,
Zhu
,
J.
,
Ma
,
G.
,
Maehara
,
A.
,
Mintz
,
G. S.
, and
Yuan
,
C.
,
2014
, “
Image-Based Modeling for Better Understanding and Assessment of Atherosclerotic Plaque Progression and Vulnerability: Data, Modeling, Validation, Uncertainty and Predictions
,”
J. Biomech.
,
47
(
4
), pp.
834
846
.
19.
Wang
,
L.
,
Tang
,
D.
,
Maehara
,
A.
,
Wu
,
Z.
,
Yang
,
C.
,
Muccigrosso
,
D.
,
Zheng
,
J.
,
Bach
,
R.
,
Billiar
,
K. L.
, and
Mintz
,
G. S.
,
2018
, “
Fluid-Structure Interaction Models Based on Patient-Specific IVUS at Baseline and Follow-Up for Prediction of Coronary Plaque Progression by Morphological and Biomechanical Factors: A Preliminary Study
,”
J. Biomech.
,
68
, pp.
43
50
.
20.
Tearney
,
G. J.
,
Regar
,
E.
,
Akasaka
,
T.
,
Adriaenssens
,
T.
,
Barlis
,
P.
,
Bezerra
,
H. G.
,
Bouma
,
B.
,
Bruining
,
N.
,
Cho
,
J.-M.
,
Chowdhary
,
S.
,
Costa
,
M. A.
,
de Silva
,
R.
,
Dijkstra
,
J.
,
Di Mario
,
C.
,
Dudeck
,
D.
,
Falk
,
E.
,
Feldman
,
M. D.
,
Fitzgerald
,
P.
,
Garcia
,
H.
,
Gonzalo
,
N.
,
Granada
,
J. F.
,
Guagliumi
,
G.
,
Holm
,
N. R.
,
Honda
,
Y.
,
Ikeno
,
F.
,
Kawasaki
,
M.
,
Kochman
,
J.
,
Koltowski
,
L.
,
Kubo
,
T.
,
Kume
,
T.
,
Kyono
,
H.
,
Lam
,
C. C. S.
,
Lamouche
,
G.
,
Lee
,
D. P.
,
Leon
,
M. B.
,
Maehara
,
A.
,
Manfrini
,
O.
,
Mintz
,
G. S.
,
Mizuno
,
K.
,
Morel
,
M.-A.
,
Nadkarni
,
S.
,
Okura
,
H.
,
Otake
,
H.
,
Pietrasik
,
A.
,
Prati
,
F.
,
Räber
,
L.
,
Radu
,
M. D.
,
Rieber
,
J.
,
Riga
,
M.
,
Rollins
,
A.
,
Rosenberg
,
M.
,
Sirbu
,
V.
,
Serruys
,
P. W. J. C.
,
Shimada
,
K.
,
Shinke
,
T.
,
Shite
,
J.
,
Siegel
,
E.
,
Sonada
,
S.
,
Suter
,
M.
,
Takarada
,
S.
,
Tanaka
,
A.
,
Terashima
,
M.
,
Troels
,
T.
,
Uemura
,
S.
,
Ughi
,
G. J.
,
van Beusekom
,
H. M. M.
,
van der Steen
,
A. F. W.
,
van Es
,
G.-A.
,
van Soest
,
G.
,
Virmani
,
R.
,
Waxman
,
S.
,
Weissman
,
N. J.
, and
Weisz
,
G.
,
2012
, “
Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies: A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation
,”
J. Am. Coll. Cardiol.
,
59
(
12
), pp.
1058
1072
.
21.
Uemura
,
S.
,
Ishigami
,
K. I.
,
Soeda
,
T.
,
Okayama
,
S.
,
Sung
,
J. H.
,
Nakagawa
,
H.
,
Somekawa
,
S.
,
Takeda
,
Y.
,
Kawata
,
H.
,
Horii
,
M.
, and
Saito
,
Y.
,
2012
, “
Thin-Cap Fibroatheroma and Microchannel Findings in Optical Coherence Tomography Correlate With Subsequent Progression of Coronary Atheromatous Plaques
,”
Eur. Heart J.
,
33
(
1
), pp.
78
85
.
22.
Barlis
,
P.
,
Serruys
,
P. W.
,
Gonzalo
,
N.
,
van der Giessen
,
W. J.
,
de Jaegere
,
P. J.
, and
Regar
,
E.
,
2008
, “
Assessment of Culprit and Remote Coronary Narrowings Using Optical Coherence Tomography With Long-Term Outcomes
,”
Am. J. Cardiol.
,
102
(
4
), pp.
391
395
.
23.
Bourantas
,
C. V.
,
Papafaklis
,
M. I.
,
Kotsia
,
A.
,
Farooq
,
V.
,
Muramatsu
,
T.
,
Gomez-Lara
,
J.
,
Zhang
,
Y. J.
,
Iqbal
,
J.
,
Kalatzis
,
F. G.
,
Naka
,
K. K.
, and
Fotiadis
,
D. I.
,
2014
, “
Effect of the Endothelial Shear Stress Patterns on Neointimal Proliferation Following Drug-Eluting Bioresorbable Vascular Scaffold Implantation: An Optical Coherence Tomography Study
,”
JACC: Cardiovasc. Interventions
,
7
(
3
), pp.
315
324
.
24.
Matsumoto
,
D.
,
Shite
,
J.
,
Shinke
,
T.
,
Otake
,
H.
,
Tanino
,
Y.
,
Ogasawara
,
D.
,
Sawada
,
T.
,
Paredes
,
O. L.
,
Hirata
,
K. I.
, and
Yokoyama
,
M.
,
2007
, “
Neointimal Coverage of Sirolimus-Eluting Stents at 6-Month Follow-Up: Evaluated by Optical Coherence Tomography
,”
Eur. Heart J.
,
28
(
8
), pp.
961
967
.
25.
Molony
,
D. S.
,
Timmins
,
L. H.
,
Rassoul-Arzrumly
,
E.
,
Samady
,
H.
, and
Giddens
,
D. P.
,
2016
, “
Evaluation of a Framework for the Co-Registration of Intravascular Ultrasound and Optical Coherence Tomography Coronary Artery Pullbacks
,”
J. Biomech.
,
49
(
16
), pp.
4048
4056
.
26.
Guo
,
X.
,
Tang
,
D.
,
Molony
,
D.
,
Yang
,
C.
,
Samady
,
H.
,
Zheng
,
J.
,
Mintz
,
G. S.
,
Maehara
,
A.
,
Wang
,
L.
,
Pei
,
X.
,
Li
,
Z. Y.
,
Ma
,
G. S.
, and
Giddens
,
D. P.
,
2019
, “
A Machine Learning-Based Method for Intracoronary OCT Segmentation and Vulnerable Coronary Plaque Cap Thickness Quantification
,”
Int. J. Comput. Methods
,
16
(
3
), p.
1842008
.
27.
Yang
,
C.
,
Bach
,
R. G.
,
Zheng
,
J.
,
Naqa
,
I. E.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
, and
Tang
,
D.
,
2009
, “
In Vivo IVUS-Based 3-D Fluid–Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.
28.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
29.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1/3
), pp.
1
48
.
30.
Walsh
,
M. T.
,
Cunnane
,
E. M.
,
Mulvihill
,
J. J.
,
Akyildiz
,
A. C.
,
Gijsen
,
F. J. H.
, and
Holzapfel
,
G. A.
,
2014
, “
Uniaxial Tensile Testing Approaches for Characterisation of Atherosclerotic Plaques
,”
J. Biomech.
,
47
(
4
), pp.
793
804
.
31.
Teng
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Feng
,
J.
,
Yuan
,
J.
,
Lu
,
Q.
,
Sutcliffe
,
M. P.
,
Brown
,
A. J.
,
Jing
,
Z.
, and
Gillard
,
J. H.
,
2014
, “
Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study
,”
Acta Biomater.
,
10
(
12
), pp.
5055
5063
.
32.
Wang
,
Q.
,
Tang
,
D.
,
Canton
,
G.
,
Wu
,
Z.
,
Hatsukami
,
T. S.
,
Billiar
,
K. L.
, and
Yuan
,
C.
,
2018
, “
Stress-Based Plaque Vulnerability Index and Assessment for Carotid Atherosclerotic Plaques Using Patient-Specific Vessel Material Properties
,”
MCB: Mol. Cell. Biomech.
,
15
(
4
), pp.
189
201
.
33.
Suykens
,
J. A.
,
Van Gestel
,
T. D.
, and
Brabanter
,
J.
,
2002
,
Least Squares Support Vector Machines
,
World Scientific
, Hackensack, Singapore, Chap. 3.
You do not currently have access to this content.