Finite element and machine learning modeling are two predictive paradigms that have rarely been bridged. In this study, we develop a parametric model to generate arterial geometries and accumulate a database of 12,172 2D finite element simulations modeling the hyperelastic behavior and resulting stress distribution. The arterial wall composition mimics vessels in atherosclerosis–a complex cardiovascular disease and one of the leading causes of death globally. We formulate the training data to predict the maximum von Mises stress, which could indicate risk of plaque rupture. Trained deep learning models are able to accurately predict the max von Mises stress within 9.86% error on a held-out test set. The deep neural networks outperform alternative prediction models and performance scales with amount of training data. Lastly, we examine the importance of contributing features on stress value and location prediction to gain intuitions on the underlying process. Moreover, deep neural networks can capture the functional mapping described by the finite element method, which has far-reaching implications for real-time and multiscale prediction tasks in biomechanics.

References

References
1.
Madani
,
A.
,
Garakani
,
K.
, and
Mofrad
,
M. R. K.
,
2017
, “
Molecular Mechanics of Staphylococcus Aureus Adhesin, CNA, and the Inhibition of Bacterial Adhesion by Stretching Collagen
,”
PLoS One
,
12
(
6
), pp.
1
19
.
2.
Bakhaty
,
A. A.
,
Govindjee
,
S.
, and
Mofrad
,
M. R. K.
,
2017
, “
Consistent Trilayer Biomechanical Modeling of Aortic Valve Leaflet Tissue
,”
J. Biomech.
,
61
, pp.
1
10
.
3.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
4.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
, 2015, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,” International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham, Switzerland, pp. 234–241.
5.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
ICLR
, San Diego, CA, pp.
1
14
.
6.
Sutskever
,
I.
,
Vinyals
,
O.
, and
Le
,
Q. V.
,
2014
, “
Sequence to Sequence Learning With Neural Networks
,”
Adv. Neural Inf. Process. Syst.
,
27
, pp.
61
63
.
7.
Kim
,
Y.
,
Jernite
,
Y.
,
Sontag
,
D.
, and
Rush
,
A. M.
,
2016
, “
Character-Aware Neural Language Models
,”
The Thirtieth AAAI Conference on Artificial Intelligence
, Phoenix, AZ, Feb. 12–17, pp.
2741
2749
.https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewFile/12489/12017
8.
Botu
,
V.
, and
Ramprasad
,
R.
,
2015
, “
Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics
,”
Int. J. Quantum Chem.
,
115
(
16
), pp.
1074
1083
.
9.
Han
,
J.
,
Jentzen
,
A.
, and
Weinan
,
E.
,
2018
, “
Solving High-Dimensional Partial Differential Equations Using Deep Learning
,”
Proc. Natl. Acad. Sci.
,
115
(
34
), pp. 8505–8510.https://www.pnas.org/content/115/34/8505
10.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning: Part II—Data-Driven Discovery of Nonlinear Partial Differential Equations
,”
J. Comput. Phys
.,
378
(1), pp. 686–707.
11.
Martínez-Martínez
,
F.
,
Rupérez-Moreno
,
M. J.
,
Martínez-Sober
,
M.
,
Solves-Llorens
,
J. A.
,
Lorente
,
D.
,
Serrano-López
,
A. J.
,
Martínez-Sanchis
,
S.
,
Monserrat
,
C.
, and
Martín-Guerrero
,
J. D.
,
2017
, “
A Finite Element-Based Machine Learning Approach for Modeling the Mechanical Behavior of the Breast Tissues Under Compression in Real-Time
,”
Comput. Biol. Med.
,
90
, pp.
116
124
.
12.
Ruder
,
S.
,
2017
, “
An Overview of Multi-Task Learning in Deep Neural Networks
,” e-print
arXiv: 1706.05098
.https://arxiv.org/abs/1706.05098
13.
Weinberg
,
E. J.
, and
Mofrad
,
M. R. K.
,
2007
, “
Three-Dimensional, Multiscale Simulations of the Human Aortic Valve
,”
Cardiovasc. Eng.
,
7
(
4
), pp.
140
155
.
14.
Madani
,
A.
,
Ong
,
J. R.
,
Tibrewal
,
A.
, and
Mofrad
,
M. R. K.
,
2018
, “
Deep Echocardiography: Data-Efficient Supervised and Semi-Supervised Deep Learning Towards Automated Diagnosis of Cardiac Disease
,”
Npj Digital Med.
,
1
(
1
), p.
59
.
15.
Madani
,
A.
,
Arnaout
,
R.
,
Mofrad
,
M.
, and
Arnaout
,
R.
,
2018
, “
Fast and Accurate View Classification of Echocardiograms Using Deep Learning
,”
Npj Digital Med.
,
1
(
1
), p.
6
.
16.
Asgari
,
E.
,
Münch
,
P. C.
,
Lesker
,
T. R.
,
McHardy
,
A. C.
, and
Mofrad
,
M. R. K.
,
2018
, “
DiTaxa: Nucleotide-Pair Encoding of 16S rRNA for Host Phenotype and Biomarker Detection
,”
Bioinformatics
,
954
, pp. 1–3.
17.
Asgari
,
E.
,
Garakani
,
K.
,
McHardy
,
A. C.
, and
Mofrad
,
M. R. K.
,
2018
, “
MicroPheno: Predicting Environments and Host Phenotypes From 16S rRNA Gene Sequencing Using a k-Mer Based Representation of Shallow Sub-Samples
,”
Bioinformatics
,
34
(
13
), pp.
i32
i42
.
18.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
,
Elefteriades
,
J. A.
, and
Sun
,
W.
,
2017
, “
A Machine Learning Approach to Investigate the Relationship Between Shape Features and Numerically Predicted Risk of Ascending Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
16
(
5
), pp.
1519
1533
.
19.
Liang
,
L.
,
Liu
,
M.
, and
Sun
,
W.
,
2017
, “
A Deep Learning Approach to Estimate Chemically-Treated Collagenous Tissue Nonlinear Anisotropic Stress-Strain Responses From Microscopy Images Acta Biomaterialia a Deep Learning Approach to Estimate Chemically-Treated Collagenous Tissue Nonlinear Anisotropic Stress-Strain Responses From Microscopy Images
,”
Acta Biomater.
,
63
, pp.
227
235
.
20.
Chau
,
A. H.
,
Chan
,
R. C.
,
Shishkov
,
M.
,
Macneill
,
B.
,
Iftimia
,
N.
,
Tearney
,
G. J.
,
Kamm
,
R. D.
,
Bouma
,
B. E.
, and
Kaazempur-Mofrad
,
M. R.
,
2004
, “
Mechanical Analysis of Atherosclerotic Plaques Based on Optical Coherence Tomography
,”
Ann. Biomed. Eng.
,
32
, pp. 1494–1503.
21.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp. 1–48.
22.
Fung
,
Y. C.
,
1990
, “
Biomechanical Aspects of Growth and Tissue Engineering
,”
Biomechanics
,
Springer
, New York, pp.
499
546
.
23.
Holzapfel
,
G.
,
2000
,
Nonlinear Solid Mech.: A Continuum Approach Engineering
, Wiley, Hoboken, NJ.
24.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
, “
The Finite Element Method: Solid Mechanics
,” Vasa, Woburn, MA.
25.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Constitutive Modelling of Arteries
,”
Proc. R. Soc. A
,
466
(
2118
), pp.
1551
1597
.
26.
Gundiah
,
N.
,
B Ratcliffe
,
M. B.
, and
Pruitt
,
L. A.
,
2007
, “
Determination of Strain Energy Function for Arterial Elastin: Experiments Using Histology and Mechanical Tests
,”
J. Biomech.
,
40
, pp. 586–594.
27.
Persson
,
P.-O.
, and
Strang
,
G.
,
2004
, “
A Simple Mesh Generator in MATLAB
,”
SIAM Rev.
,
46
(
2
), pp.
329
345
.
28.
Taylor
,
R. L.
,
2002
, “
Feap—A Finite Element Analysis Program
,”
Transp. Res. Board
,
1
, pp. 1–690.http://projects.ce.berkeley.edu/feap/manual85.pdf
29.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
,
Isard
,
M.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D. G.
,
Steiner
,
B.
,
Tucker
,
P.
,
Vasudevan
,
V.
,
Warden
,
P.
,
Wicke
,
M.
,
Yu
,
Y.
,
Zheng
,
X.
, and
Brain
,
G.
,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning TensorFlow
,”
Twelfth USENIX Symposium on Operating System Design and Implement
(
OSDI
'16), Savannah, GA, pp.
265
284
.https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
30.
Chollet
,
F.
,
2015
, “
Keras
,” Google, Mountain View, CA, accessed Apr. 2, 2019, https://github.com/fchollet/keras
31.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
, pp.
1929
1958
.http://jmlr.org/papers/v15/srivastava14a.html
32.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,” ICLR 2015, San Diego, CA, May 7, pp. 1–15.
33.
Zipes
,
D. P.
,
2001
, “
American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS)
,”
J. Am. Coll. Cardiol.
,
37
(
5
), pp.
1478
1492
.http://www.onlinejacc.org/content/accj/37/5/1478.full.pdf
34.
Shrivastava
,
A.
,
Pfister
,
T.
,
Tuzel
,
O.
,
Susskind
,
J.
,
Wang
,
W.
, and
Webb
,
R.
,
2017
, “
Learning From Simulated and Unsupervised Images Through Adversarial Training
,”
30th IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Honolulu, HI, July 22, pp. 2107–2116.
35.
Chen
,
X.
,
Duan
,
Y.
,
Houthooft
,
R.
,
Schulman
,
J.
,
Sutskever
,
I.
, and
Abbeel
,
P.
,
2016
, “
InfoGAN: Interpretable Representation Learning
,”
Adv. Neural Inf. Process. Syst.
,
30
, pp. 1–9.
36.
Zhang
,
C.
,
Bengio
,
S.
,
Hardt
,
M.
,
Recht
,
B.
, and
Vinyals
,
O.
,
2017
, “
Understanding Deep Learning Requires Rethinking Generalization
,” International Conference on Learning Representations (
ICLR
), Toulon, France, Apr. 24.https://openreview.net/forum?id=Sy8gdB9xx
37.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
,
2001
, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
,
103
(
8
), pp.
1051
1056
.
38.
Kaazempur-Mofrad
,
M. R.
,
Younis
,
H. F.
,
Isasi
,
A. G.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Sukhova
,
G.
,
LaMuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
,
2004
, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling and Histology
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
932
946
.
39.
Khalil
,
A. S.
,
Chan
,
R. C.
,
Chau
,
A. H.
,
Bouma
,
B. E.
, and
Kaazempur-Mofrad
,
M. R.
,
2005
, “
Tissue Elasticity Estimation With Optical Coherence Elastography: Toward Mechanical Characterization of In Vivo Soft Tissue
,”
Ann. Biomed. Eng.
,
33
(
11
), pp.
1631
1639
.
You do not currently have access to this content.