Characterization of muscle mechanism through the torque-angle and torque–velocity relationships is critical for human movement evaluation and simulation. in vivo determination of these relationships through dynamometric measurements and modeling is based on physiological and mathematical aspects. However, no investigation regarding the effects of the mathematical model and the physiological parameters underneath these models was found. The purpose of the current study was to compare the capacity of various torque-angle and torque–velocity models to fit experimental dynamometric measurement of the elbow and provide meaningful mechanical and physiological information. Therefore, varying mathematical function and physiological muscle parameters from the literature were tested. While a quadratic torque-angle model seemed to increase predicted to measured elbow torque fitting, a new power-based torque–velocity parametric model gave meaningful physiological values to interpret with similar fitting results to a classical torque–velocity model. This model is of interest to extract modeling and clinical knowledge characterizing the mechanical behavior of such a joint.

References

References
1.
Bosco
,
C.
,
Belli
,
A.
,
Astrua
,
M.
,
Tihanyi
,
J.
,
Pozzo
,
R.
,
Kellis
,
S.
,
Tsarpela
,
O.
,
Foti
,
C.
,
Manno
,
R.
, and
Tranquilli
,
C.
,
1995
, “
A Dynamometer for Evaluation of Dynamic Muscle Work
,”
Eur. J. Appl. Physiol.
,
70
(
5
), pp.
379
386
.
2.
Frey-Law
,
L. A.
,
Laake
,
A.
,
Avin
,
K. G.
,
Heitsman
,
J.
,
Marler
,
T.
, and
Abdel-Malek
,
K.
,
2012
, “
Knee and Elbow 3D Strength Surfaces: Peak Torque-Angle-Velocity Relationships
,”
J. Appl. Biomech.
,
28
(
6
), pp.
726
737
.
3.
Gülch
,
R. W.
,
1994
, “
Force-Velocity Relations in Human Skeletal Muscle
,”
Int. J. Sports Med.
,
15
(
S 1
), pp.
S2
S10
.
4.
Cole
,
G. K.
,
Van Den Bogert
,
A. J.
,
Herzog
,
W.
, and
Gerritsen
,
K. G.
,
1996
, “
Modelling of Force Production in Skeletal Muscle Undergoing Stretch
,”
J. Biomech.
,
29
(
8
), pp.
1091
1104
.
5.
Rassier
,
D.
,
MacIntosh
,
B.
, and
Herzog
,
W.
,
1999
, “
Length Dependence of Active Force Production in Skeletal Muscle
,”
J. Appl. Physiol.
,
86
(
5
), pp.
1445
1457
.
6.
Murray
,
W. M.
,
Delp
,
S. L.
, and
Buchanan
,
T. S.
,
1995
, “
Variation of Muscle Moment Arms With Elbow and Forearm Position
,”
J. Biomech.
,
28
(
5
), pp.
513
515525
.
7.
Brown
,
I. E.
,
Cheng
,
E. J.
, and
Loeb
,
G. E.
,
1999
, “
Measured and Modeled Properties of Mammalian Skeletal Muscle—II: The Effects of Stimulus Frequency on Force-Length and Force-Velocity Relationships
,”
J. Muscle Res. Cell Motil.
,
20
(
7
), pp.
627
643
.
8.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
9.
Chow
,
J. W.
,
Darling
,
W. G.
,
Hay
,
J. G.
, and
Andrews
,
J. G.
,
1999
, “
Determining the Force-Length-Velocity Relations of the Quadriceps Muscles—III: A Pilot Study
,”
J. Appl. Biomech.
,
15
(
2
), pp.
200
209
.
10.
van den Bogert
,
A. J.
,
Gerritsen
,
K. G.
, and
Cole
,
G. K.
,
1998
, “
Human Muscle Modelling From a User's Perspective
,”
J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol.
,
8
(
2
), pp.
119
124
.
11.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.
12.
Anderson
,
D. E.
,
Madigan
,
M. L.
, and
Nussbaum
,
M. A.
,
2007
, “
Maximum Voluntary Joint Torque as a Function of Joint Angle and Angular Velocity: Model Development and Application to the Lower Limb
,”
J. Biomech.
,
40
(
14
), pp.
3105
3113
.
13.
Hatze
,
H.
,
1977
, “
A Myocybernetic Control Model of Skeletal Muscle
,”
Biol. Cybern.
,
25
(
2
), pp.
103
119
.
14.
Haering
,
D.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2017
, “
Which Mathematical Model Best Fit the Maximal Isometric Torque-Angle Relationship of the Elbow?
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
Suppl. 1
), pp.
101
102
.
15.
Brown
,
I. E.
,
Scott
,
S. H.
, and
Loeb
,
G. E.
,
1996
, “
Mechanics of Feline Soleus—II: Design and Validation of a Mathematical Model
,”
J. Muscle Res. Cell Motil.
,
17
(
2
), pp.
221
233
.
16.
van Soest
,
A. J.
,
Huijing
,
P. A.
, and
Solomonow
,
M.
,
1995
, “
The Effect of Tendon on Muscle Force in Dynamic Isometric Contractions: A Simulation Study
,”
J. Biomech.
,
28
(
7
), pp.
801
807
.
17.
Wickiewicz
,
T. L.
,
Roy
,
R. R.
,
Powell
,
P. L.
,
Perrine
,
J. J.
, and
Edgerton
,
V. R.
,
1984
, “
Muscle Architecture and Force-Velocity Relationships in Humans
,”
J. Appl. Physiol.
,
57
(
2
), pp.
435
443
.
18.
Yeadon
,
M. R.
,
King
,
M. A.
, and
Wilson
,
C.
,
2006
, “
Modelling the Maximum Voluntary Joint Torque/Angular Velocity Relationship in Human Movement
,”
J. Biomech.
,
39
(
3
), pp.
476
482
.
19.
Forrester
,
S. E.
,
Yeadon
,
M. R.
,
King
,
M. A.
, and
Pain
,
M. T.
,
2011
, “
Comparing Different Approaches for Determining Joint Torque Parameters From Isovelocity Dynamometer Measurements
,”
J. Biomech.
,
44
(
5
), pp.
955
961
.
20.
Haering
,
D.
,
Pontonnier
,
C.
,
Bideau
,
N.
,
Nicolas
,
G.
, and
Dumont
,
G.
,
2017
, “
Task Specific Maximal Elbow Torque Model for Ergonomic Evaluation
,”
XXVI Congress of the International Society of Biomechanics
, Brisbane, Australia, July 23–27, p. 875.
21.
Moore
,
J. S.
, and
Garg
,
A.
,
1995
, “
The Strain Index: A Proposed Method to Analyze Jobs for Risk of Distal Upper Extremity Disorders
,”
Am. Ind. Hyg. Assoc. J.
,
56
(
5
), pp.
443
458
.
22.
Haff
,
G. G.
, and
Nimphius
,
S.
,
2012
, “
Training Principles for Power
,”
Strength Cond. J.
,
34
(
6
), p.
2
.
23.
Hedlund
,
M.
,
Lindström
,
B.
,
Sojka
,
P.
,
Lundström
,
R.
, and
Olsson
,
C.-J.
,
2015
, “
Pronounced Decrease in Concentric Strength Following Stroke Due to Pre-Frontally Mediated Motor Inhibition
,”
Physiotherapy
,
101
, pp.
e553
e554
.
24.
Muller
,
A.
,
Haering
,
D.
,
Pontonnier
,
C.
, and
Dumont
,
G.
,
2017
, “
Non-Invasive Techniques for Musculoskeletal Model Calibration
,” Congrès Français de Mécanique, Lille, France, Aug.
25.
Staron
,
R. S.
,
Hagerman
,
F. C.
,
Hikida
,
R. S.
,
Murray
,
T. F.
,
Hostler
,
D. P.
,
Crill
,
M. T.
,
Ragg
,
K. E.
, and
Toma
,
K.
,
2000
, “
Fiber Type Composition of the Vastus Lateralis Muscle of Young Men and Women
,”
J. Histochem. Cytochem. Off. J. Histochem. Soc.
,
48
(
5
), pp.
623
629
.
26.
Sopher
,
R. S.
,
Amis
,
A. A.
,
Davies
,
D. C.
, and
Jeffers
,
J. R.
,
2017
, “
The Influence of Muscle Pennation Angle and Cross-Sectional Area on Contact Forces in the Ankle Joint
,”
J. Strain Anal. Eng. Des.
,
52
(
1
), pp.
12
23
.
27.
Veeger
,
H. E.
,
Yu
,
B.
,
An
,
K. N.
, and
Rozendal
,
R. H.
,
1997
, “
Parameters for Modeling the Upper Extremity
,”
J. Biomech.
,
30
(
6
), pp.
647
652
.
28.
Croisier
,
J. L.
, and
Crielaard
,
J. M.
,
1999
, “
Exploration Isocinétique: Analyse Des Paramètres Chiffrés
,”
Ann. Réadapt. Médecine Phys.
,
42
(
9
), pp.
538
545
.
29.
Froese
,
E. A.
, and
Houston
,
M. E.
,
1985
, “
Torque-Velocity Characteristics and Muscle Fiber Type in Human Vastus Lateralis
,”
J. Appl. Physiol.
,
59
(
2
), pp.
309
314
.
30.
Schantz
,
P.
,
Randal Fox
,
E.
,
Hutchison
,
W.
,
Tydén
,
A.
, and
Åstrand
,
P.
,
1983
, “
Muscle Fibre Type Distribution, Muscle Cross‐Sectional Area and Maximal Voluntary Strength in Humans
,”
Acta Physiol.
,
117
(
2
), pp.
219
226
.
31.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. B.
,
126
(
843
), pp.
136
195
.
32.
Koo
,
T. K.
,
Mak
,
A. F.
, and
Hung
,
L.
,
2002
, “
In Vivo Determination of Subject-Specific Musculotendon Parameters: Applications to the Prime Elbow Flexors in Normal and Hemiparetic Subjects
,”
Clin. Biomech.
,
17
(
5
), pp.
390
399
.
33.
Gauthier
,
A.
,
Davenne
,
D.
,
Martin
,
A.
, and
Van Hoecke
,
J.
,
2001
, “
Time of Day Effects on Isometric and Isokinetic Torque Developed During Elbow Flexion in Humans
,”
Eur. J. Appl. Physiol.
,
84
(
3
), pp.
249
252
.
34.
Ellenbecker
,
T. S.
, and
Roetert
,
E. P.
,
2003
, “
Isokinetic Profile of Elbow Flexion and Extension Strength in Elite Junior Tennis Players
,”
J. Orthop. Sports Phys. Ther.
,
33
(
2
), pp.
79
84
.
35.
Boone
,
D. C.
, and
Azen
,
S. P.
,
1979
, “
Normal Range of Motion of Joints in Male Subjects
,”
JBJS
,
61
(
5
), pp.
756
759
.
36.
Chang
,
Y.-W.
,
Su
,
F.-C.
,
Wu
,
H.-W.
, and
An
,
K.-N.
,
1999
, “
Optimum Length of Muscle Contraction
,”
Clin. Biomech.
,
14
(
8
), pp.
537
542
.
37.
Mountjoy
,
K.
,
Morin
,
E.
, and
Hashtrudi-Zaad
,
K.
,
2010
, “
Use of the Fast Orthogonal Search Method to Estimate Optimal Joint Angle for Upper Limb Hill-Muscle Models
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
790
798
.
38.
Hasan
,
Z.
, and
Enoka
,
R.
,
1985
, “
Isometric Torque-Angle Relationship and Movement-Related Activity
,”
Exp. Brain Res.
,
59
(
3
), pp.
441
450
.
39.
Thomis
,
M. A.
,
Van Leemputte
,
M.
,
Maes
,
H. H.
,
Blimkie
,
C. J. R.
,
Claessens
,
A. L.
,
Marchal
,
G.
,
Willems
,
E.
,
Vlietinck
,
R. F.
, and
Beunen
,
G. P.
,
1997
, “
Multivariate Genetic Analysis of Maximal Isometric Muscle Force at Different Elbow Angles
,”
J. Appl. Physiol.
,
82
(
3
), p.
959
.
40.
Karp
,
J. R.
,
2001
, “
Muscle Fiber Types and Training
,”
Strength Cond. J.
,
23
(
5
), p.
21
.
41.
MacIntosh
,
B. R.
,
Herzog
,
W.
,
Suter
,
E.
,
Wiley
,
J. P.
, and
Sokolosky
,
J.
,
1993
, “
Human Skeletal Muscle Fibre Types and Force: Velocity Properties
,”
Eur. J. Appl. Physiol.
,
67
(
6
), pp.
499
506
.
42.
Suter
,
E.
,
Herzog
,
W.
,
Sokolosky
,
J.
,
Wiley
,
J. P.
, and
Macintosh
,
B. R.
,
1993
, “
Muscle Fiber Type Distribution as Estimated by Cybex Testing and by Muscle Biopsy
,”
Med. Sci. Sports Exerc.
,
25
(
3
), pp.
363
370
.
43.
Kim
,
C.
,
Gao
,
Q.
,
Kim
,
W.
, and
Kim
,
W.
,
1994
, “
Muscle Fiber Type Distribution Estimated by Non-Invasive Technique: Based on Isometric Force and Integrated Electromyography
,”
Clin. Sci.
,
87
(
s1
), p.
107
.
44.
Toji
,
H.
, and
Kaneko
,
M.
,
2007
, “
Effects of Aging on Force, Velocity, and Power in the Elbow Flexors of Males
,”
J. Physiol. Anthropol.
,
26
(
6
), pp.
587
592
.
You do not currently have access to this content.