Freezing of the aqueous solutions that comprise biological materials, such as isotonic physiological saline, results in the formation of ice crystals and the generation of a hypertonic solution, both of which prove deleterious to biological matter. The field of modern cryopreservation, or preservation of biological matter at subfreezing temperatures, emerged from the 1948 discovery that certain chemical additives such as glycerol, known as cryoprotectants, can protect cells from freeze-related damage by depressing the freezing point of water in solution. This gave rise to a slew of important medical applications, from the preservation of sperm and blood cells to the recent preservation of an entire liver, and current cryopreservation protocols thus rely heavily on the use of additive cryoprotectants. However, high concentrations of cryoprotectants themselves prove toxic to cells, and thus there is an ongoing effort to minimize cryoprotectant usage while maintaining protection from ice-related damage. Herein, we conceive from first principles a new, purely thermodynamic method to eliminate ice formation and hypertonicity during the freezing of a physiological solution: multiphase isochoric freezing. We develop a comprehensive thermodynamic model to predict the equilibrium behaviors of multiphase isochoric systems of arbitrary composition and validate these concepts experimentally in a simple device with no moving parts, providing a baseline from which to design tailored cryopreservation protocols using the multiphase isochoric technique.

References

References
1.
Giwa
,
S.
,
Lewis
,
J. K.
,
Alvarez
,
L.
,
Langer
,
R.
,
Roth
,
A. E.
,
Church
,
G. M.
,
Markmann
,
J. F.
,
Sachs
,
D. H.
,
Chandraker
,
A.
,
Wertheim
,
J. A.
,
Rothblatt
,
M.
,
Boyden
,
E. S.
,
Eidbo
,
E.
,
Lee
,
W. P. A.
,
Pomahac
,
B.
,
Brandacher
,
G.
,
Weinstock
,
D. M.
,
Elliott
,
G.
,
Nelson
,
D.
,
Acker
,
J. P.
,
Uygun
,
K.
,
Schmalz
,
B.
,
Weegman
,
B. P.
,
Tocchio
,
A.
,
Fahy
,
G. M.
,
Storey
,
K. B.
,
Rubinsky
,
B.
,
Bischof
,
J.
,
Elliott
,
J. A. W.
,
Woodruff
,
T. K.
,
Morris
,
G. J.
,
Demirci
,
U.
,
Brockbank
,
K. G. M.
,
Woods
,
E. J.
,
Ben
,
R. N.
,
Baust
,
J. G.
,
Gao
,
D.
,
Fuller
,
B.
,
Rabin
,
Y.
,
Kravitz
,
D. C.
,
Taylor
,
M. J.
, and
Toner
,
M.
,
2017
, “
The Promise of Organ and Tissue Preservation to Transform Medicine
,”
Nat. Biotechnol.
,
35
(
6
), pp.
530
542
.
2.
Belzer
,
F. O.
, and
Southard
,
J. H.
,
1988
, “
Principles of Solid Organ Preservation by Cold Storage
,”
Transplantation
,
45
(
4
), pp.
673
676
.
3.
Thomson
,
L. K.
, Fleming, S. D., Aitken, R. J., De Iuliis, G. N., Zieschang, J. A., and Clark, A. M.,
2009
, “
Cryopreservation-Induced Human Sperm DNA Damage Is Predominantly Mediated by Oxidative Stress Rather Than Apoptosis
,”
Hum. Reprod.
,
24
(
9
), pp.
2061
2070
.
4.
Tatone
,
C.
,
Di Emidio
,
G.
,
Vento
,
M.
,
Ciriminna
,
R.
, and
Artini
,
P. G.
,
2010
, “
Cryopreservation and Oxidative Stress in Reproductive Cells
,”
Gynecol. Endocrinol.
,
26
(
8
), pp.
563
567
.
5.
Fuller
,
B. J.
,
Gower
,
J. D.
, and
Green
,
C. J.
,
1988
, “
Free Radical Damage and Organ Preservation: Fact or Fiction?: A Review of the Interrelationship Between Oxidative Stress Physiological Ion Disbalance
,”
Cryobiology
,
25
(
5
), pp.
377
393
.
6.
Arav
,
A.
, and
Zvi
,
R.
,
2008
, “
Do Chilling Injury and Heat Stress Share the Same Mechanism of Injury in Oocytes?
,”
Mol. Cell. Endocrinol.
,
282
(
1–2
), pp.
150
152
.
7.
Fahy
,
G. M.
,
Wowk
,
B.
,
Wu
,
J.
,
Phan
,
J.
,
Rasch
,
C.
,
Chang
,
A.
, and
Zendejas
,
E.
,
2004
, “
Cryopreservation of Organs by Vitrification: Perspectives and Recent Advances
,”
Cryobiology
,
48
(
2
), pp.
157
178
.
8.
Guan
,
N.
,
Blomsma
,
S. A.
,
Fahy
,
G. M.
,
Groothuis
,
G. M. M.
, and
de Graaf
,
I. A. M.
,
2013
, “
Analysis of Gene Expression Changes to Elucidate the Mechanism of Chilling Injury in Precision-Cut Liver Slices
,”
Toxicol. In Vitro
,
27
(
2
), pp.
890
899
.
9.
Steif
,
P. S.
,
Palastro
,
M. C.
, and
Rabin
,
Y.
,
2007
, “
The Effect of Temperature Gradients on Stress Development During Cryopreservation Via Vitrification
,”
Cell Preserv. Technol.
,
5
(
2
), pp.
104
115
.
10.
Ehrlich
,
L. E.
,
Fahy
,
G. M.
,
Wowk
,
B. G.
,
Malen
,
J. A.
, and
Rabin
,
Y.
,
2017
, “
Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011005
.
11.
X
,
S.
,
2008
, “
Thermal Stresses From Large Volumetric Expansion During Freezing of Biomaterials
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
720
726
.
12.
Mazur
,
P.
,
1984
, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.
,
247
(
3 Pt. 1
), pp.
C125
C142
.
13.
Mazur
,
P.
,
1970
, “
Cryobiology: The Freezing of Biological Systems
,”
Science
,
168
(
3934
), pp.
939
949
.
14.
Lovelock
,
J. E.
,
1953
, “
The Haemolysis of Human Red Blood-Cells by Freezing and Thawing
,”
Biochim. Biophys. Acta
,
10
, pp.
414
426
.
15.
Ishiguro
,
H.
, and
Rubinsky
,
B.
,
2011
, “
Microscopic Behavior of Ice Crystals and Biological Cells During Directional Solidification of Solutions With Cells
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
,
60
(
572
), pp.
1349
1355
.
16.
Ishiguro
,
H.
, and
Rubinsky
,
B.
,
1994
, “
Mechanical Interactions Between Ice Crystals and Red Blood Cells During Directional Solidification
,”
Cryobiology
,
60
(
572
), pp.
1349
1355
.
17.
Leibo
,
S. P.
,
McGrath
,
J. J.
, and
Cravalho
,
E. G.
,
1978
, “
Microscopic Observation of Intracellular Ice Formation in Unfertilized Mouse Ova as a Function of Cooling Rate
,”
Cryobiology
,
15
(
3
), pp.
257
271
.
18.
Diller
,
K. R.
,
1975
, “
Intracellular Freezing: Effect of Extracellular Supercooling
,”
Cryobiology
,
12
(
5
), pp.
480
485
.
19.
Smith
,
A. U.
, and
Polge
,
C.
,
1950
, “
Survival of Spermatozoa at Low Temperatures
,”
Nature
,
166
(
4225
), pp.
668
669
.
20.
Polge
,
C.
,
Smith
,
A. U.
, and
Parkes
,
A. S.
,
1949
, “
Revival of Spermatozoa After Vitrification and Dehydration at Low Temperatures
,”
Nature
,
164
(
4172
), p.
666
.
21.
Elliott
,
G. D.
,
Wang
,
S.
, and
Fuller
,
B. J.
,
2017
, “
Cryoprotectants: A Review of the Actions and Applications of Cryoprotective Solutes That Modulate Cell Recovery From Ultra-Low Temperatures
,”
Cryobiology
,
76
, pp.
74
91
.
22.
Fahy
,
G. M.
,
1986
, “
The Relevance of Cryoprotectant ‘Toxicity’ to Cryobiology
,”
Cryobiology
,
23
(
1
), pp.
1
13
.
23.
Finger
,
E. B.
, and
Bischof
,
J. C.
,
2018
, “
Cryopreservation by Vitrification: A Promising Approach for Transplant Organ Banking
,”
Curr. Opin. Organ Transplant.
,
23
(
3
), pp.
353
360
.
24.
Huang
,
H.
,
Yarmush
,
M. L.
, and
Usta
,
O. B.
,
2018
, “
Long-Term Deep-Supercooling of Large-Volume Water and Red Cell Suspensions Via Surface Sealing With Immiscible Liquids
,”
Nat. Commun.
,
9
(
1
), p.
3201
.
25.
Berendsen
,
T. A.
,
Bruinsma
,
B. G.
,
Puts
,
C. F.
,
Saeidi
,
N.
,
Usta
,
O. B.
,
Uygun
,
B. E.
,
Izamis
,
M. L.
,
Toner
,
M.
,
Yarmush
,
M. L.
, and
Uygun
,
K.
,
2014
, “
Supercooling Enables Long-Term Transplantation Survival Following 4 Days of Liver Preservation
,”
Nat. Med.
,
20
(
7
), pp.
790
793
.
26.
Taylor
,
M. J.
, and
Baicu
,
S. C.
,
2010
, “
Current State of Hypothermic Machine Perfusion Preservation of Organs: The Clinical Perspective
,”
Cryobiology
,
60
(
3 Suppl
.), pp.
S20
S35
.
27.
Rubinsky
,
B.
,
Perez
,
P. A.
, and
Carlson
,
M. E.
,
2005
, “
The Thermodynamic Principles of Isochoric Cryopreservation
,”
Cryobiology
,
50
(
2
), pp.
121
138
.
28.
Preciado
,
J. A.
, and
Rubinsky
,
B.
,
2010
, “
Isochoric Preservation: A Novel Characterization Method
,”
Cryobiology
,
60
(
1
), pp.
23
29
.
29.
Powell-Palm
,
M. J.
,
Zhang
,
Y.
,
Aruda
,
J.
, and
Rubinsky
,
B.
,
2019
, “
Isochoric Conditions Enable High Subfreezing Temperature Pancreatic Islet Preservation Without Osmotic Cryoprotective Agents
,”
Cryobiology
,
86
, pp.
130
133
.
30.
Wan
,
L.
,
Powell-Palm
,
M. J.
,
Lee
,
C.
,
Gupta
,
A.
,
Weegman
,
B. P.
,
Clemens
,
M. G.
, and
Rubinsky
,
B.
,
2018
, “
Preservation of Rat Hearts in Subfreezing Temperature Isochoric Conditions to –8 ° C and 78 MPa
,”
Biochem. Biophys. Res. Commun.
,
496
(
3
), pp.
852
857
.
31.
Mikus
,
H.
,
Miller
,
A.
,
Nastase
,
G.
,
Serban
,
A.
,
Shapira
,
M.
, and
Rubinsky
,
B.
,
2016
, “
The Nematode Caenorhabditis elegans Survives Subfreezing Temperatures in an Isochoric System
,”
Biochem. Biophys. Res. Commun.
,
477
(
3
), pp.
401
405
.
32.
Rubinsky
,
B.
, and
Pegg
,
D. E.
,
1988
, “
A Mathematical Model for the Freezing Process in Biological Tissue
,”
Proc. R. Soc. B Biol. Sci.
,
234
(
1276
), pp.
343
358
.http://www.jstor.org/stable/36336
33.
Pegg
,
D. E.
,
2007
, “
Principles of Cryopreservation
,”
Methods Mol. Biol.
,
368
, pp.
39
57
.
34.
Pegg
,
D. E.
,
2015
, “
Principles of Cryopreservation
,”
Cryopreserv. Free. Dry. Protoc.
,
1257
, pp.
3
19
.
35.
Pegg
,
D. E.
, and
Diaper
,
M. P.
,
1988
, “
On the Mechanism of Injury to Slowly Frozen Erythrocytes
,”
Biophys. J.
,
54
(
3
), pp.
471
488
.
36.
Karlsson
,
J. O. M.
, and
Toner
,
M.
,
1996
, “
Long-Term Storage of Tissues by Cryopreservation: Critical Issues
,”
Biomaterials
,
17
(
3
), pp.
243
256
.
You do not currently have access to this content.