Pre-impact fall detection can send alarm service faster to reduce long-lie conditions and decrease the risk of hospitalization. Detecting various types of fall to determine the impact site or direction prior to impact is important because it increases the chance of decreasing the incidence or severity of fall-related injuries. In this study, a robust pre-impact fall detection model was developed to classify various activities and falls as multiclass and its performance was compared with the performance of previous developed models. Twelve healthy subjects participated in this study. All subjects were asked to place an inertial measuring unit module by fixing on a belt near the left iliac crest to collect accelerometer data for each activity. Our novel proposed model consists of feature calculation and infinite latent feature selection (ILFS) algorithm, auto labeling of activities, and application of machine learning classifiers for discrete and continuous time series data. Nine machine-learning classifiers were applied to detect falls prior to impact and derive final detection results by sorting the classifier. Our model showed the highest classification accuracy. Results for the proposed model that could classify as multiclass showed significantly higher average classification accuracy of 99.57 ± 0.01% for discrete data-based classifiers and 99.84 ± 0.02% for continuous time series-based classifiers than previous models (p < 0.01). In the future, multiclass pre-impact fall detection models can be applied to fall protector devices by detecting various activities for sending alerts or immediate feedback reactions to prevent falls.

References

References
1.
Sattin
,
R. W.
,
1992
, “
Falls Among Older Persons: A Public Health Perspective
,”
Annu. Review Public Health
,
13
(
1
), pp.
489
508
.
2.
Berg
,
W. P.
,
Alessio
,
H. M.
,
Mills
,
E. M.
, and
Tong
,
C.
,
1997
, “
Circumstances and Consequences of Falls in Independent Community-Dwelling Older Adults
,”
Age Ageing
,
26
(
4
), pp.
261
268
.
3.
Hu
,
X.
, and
Qu
,
X.
,
2016
, “
Pre-Impact Fall Detection
,”
Biomed. Eng. Online
,
15
(
1
), p.
61
.
4.
Rajagopalan
,
R.
,
Litvan
,
I.
, and
Jung
,
T. P.
,
2017
, “
Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions
,”
Sensors
,
17
(
11
), p.
2509
.
5.
Noury
,
N.
,
Fleury
,
A.
,
Rumeau
,
P.
,
Bourke
,
A. K.
,
Laighin
,
G. O.
,
Rialle
,
V.
, and
Lundy
,
J. E.
,
2007
, “
Fall Detection—Principles and Methods,” Engineering in Medicine and Biology Society (EMBS)
,”
29th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (
EMBS
), Lyon, France, Aug. 22–26, pp.
1663
1666
.
6.
Tamura
,
T.
,
Yoshimura
,
T.
,
Sekine
,
M.
,
Uchida
,
M.
, and
Tanaka
,
O.
,
2009
, “
A Wearable Airbag to Prevent Fall Injuries
,”
IEEE Trans. Inf. Technol. Biomed.
,
13
(
6
), pp.
910
914
.
7.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2012
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
2
), pp.
288
297
.
8.
Monaco
,
V.
,
Tropea
,
P.
,
Aprigliano
,
F.
,
Martelli
,
D.
,
Parri
,
A.
,
Cortese
,
M.
,
Molino-Lova
,
R.
,
Vitiello
,
N.
, and
Micera
,
S.
,
2017
, “
An Ecologically-Controlled Exoskeleton Can Improve Balance Recovery After Slippage
,”
Sci. Rep.
,
7
, p.
46721
.
9.
DeGoede
,
K. M.
,
Ashton-Miller
,
J. A.
, and
Schultz
,
A. B.
,
2003
, “
Fall-Related Upper Body Injuries in the Older Adult: A Review of the Biomechanical Issues
,”
J. Biomech.
,
36
(
7
), pp.
1043
1053
.
10.
Rubenstein
,
L. Z.
,
2006
, “
Falls in Older People: Epidemiology, Risk Factors and Strategies for Prevention
,”
Age Ageing
,
35
(
Suppl. 2
), pp.
ii37
ii41
.
11.
Nevitt
,
M. C.
, and
Cummings
,
S. R.
,
1993
, “
Type of Fall and Risk of Hip and Wrist Fractures: The Study of Osteoporotic Fractures
,”
J. Am. Geriatr. Soc.
,
41
(
11
), pp.
1226
1234
.
12.
Kelly
,
D. W.
, and
Kelly
,
B. D.
,
2012
, “
A Novel Diagnostic Sign of Hip Fracture Mechanism in Ground Level Falls: Two Case Reports and Review of the Literature
,”
J. Med. Case Rep.
,
6
(
1
), p.
136
.
13.
Merrill
,
Z.
,
Chambers
,
A. J.
, and
Cham
,
R.
,
2017
, “
Arm Reactions in Response to an Unexpected Slip—Impact of Aging
,”
J. Biomech.
,
58
, pp.
21
26
.
14.
Tolkiehn
,
M.
,
Atallah
,
L.
,
Lo
,
B.
, and
Yang
,
G. Z.
,
2011
, “
Direction Sensitive Fall Detection Using a Triaxial Accelerometer and a Barometric Pressure Sensor
,”
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (
EMBS
), Boston, MA, Aug. 30–Sept. 3, pp.
369
372
.
15.
Lindemann
,
U.
,
Hock
,
A.
,
Stuber
,
M.
,
Keck
,
W.
, and
Becker
,
C.
,
2005
, “
Evaluation of a Fall Detector Based on Accelerometers: A Pilot Study
,”
Med. Biol. Eng. Comput.
,
43
(
5
), pp.
548
551
.
16.
Bourke
,
A. K.
,
O'donovan
,
K. J.
, and
Olaighin
,
G.
,
2008
, “
The Identification of Vertical Velocity Profiles Using an Inertial Sensor to Investigate Pre-Impact Detection of Falls
,”
Med. Eng. Phys.
,
30
(
7
), pp.
937
946
.
17.
Liu
,
J.
, and
Lockhart
,
T. E.
,
2014
, “
Development and Evaluation of a Prior-to-Impact Fall Event Detection Algorithm
,”
IEEE Trans. Biomed. Eng.
,
61
(
7
), pp.
2135
2140
.
18.
Sabatini
,
A. M.
,
Ligorio
,
G.
,
Mannini
,
A.
,
Genovese
,
V.
, and
Pinna
,
L.
,
2016
, “
Prior-to-and Post-Impact Fall Detection Using Inertial and Barometric Altimeter Measurements
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
7
), pp.
774
783
.
19.
Zhao
,
G.
,
Mei
,
Z.
,
Liang
,
D.
,
Ivanov
,
K.
,
Guo
,
Y.
,
Wang
,
Y.
, and
Wang
,
L.
,
2012
, “
Exploration and Implementation of a Pre-Impact Fall Recognition Method Based on an Inertial Body Sensor Network
,”
Sensors
,
12
(
11
), pp.
15338
15355
.
20.
Tong
,
L.
,
Song
,
Q.
,
Ge
,
Y.
, and
Liu
,
M.
,
2013
, “
HMM-Based Human Fall Detection and Prediction Method Using Tri-Axial Accelerometer
,”
IEEE Sens. J.
,
13
(
5
), pp.
1849
1856
.
21.
Kangas
,
M.
,
Konttila
,
A.
,
Lindgren
,
P.
,
Winblad
,
I.
, and
Jämsä
,
T.
,
2008
, “
Comparison of Low-Complexity Fall Detection Algorithms for Body Attached Accelerometers
,”
Gait Posture
,
28
(
2
), pp.
285
291
.
22.
Otanasap
,
N.
,
2016
, “
Pre-Impact Fall Detection Based on Wearable Device Using Dynamic Threshold Model
,”
17th International Conference on Parallel and Distributed Computing, Applications and Technologies
(
PDCAT
), Guangzhou, China, Dec. 16–18, pp.
362
365
.
23.
Wu
,
G.
,
2000
, “
Distinguishing Fall Activities From Normal Activities by Velocity Characteristics
,”
J. Biomech.
,
33
(
11
), pp.
1497
1500
.
24.
Aziz
,
O.
,
Musngi
,
M.
,
Park
,
E. J.
,
Mori
,
G.
, and
Robinovitch
,
S. N.
,
2017
, “
A Comparison of Accuracy of Fall Detection Algorithms (Threshold-Based Vs. Machine Learning) Using Waist-Mounted Tri-Axial Accelerometer Signals From a Comprehensive Set of Falls and Non-Fall Trials
,”
Med. Biol. Eng. Comput.
,
55
(
1
), pp.
45
55
.
25.
Aziz
,
O.
,
Russell
,
C. M.
,
Park
,
E. J.
, and
Robinovitch
,
S. N.
,
2014
, “
The Effect of Window Size and Lead Time on Pre-Impact Fall Detection Accuracy Using Support Vector Machine Analysis of Waist Mounted Inertial Sensor Data
,” 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBS
), Chicago, IL, Aug. 26–30, pp.
30
33
.
26.
Shi
,
G.
,
Chan
,
C. S.
,
Li
,
W. J.
,
Leung
,
K. S.
,
Zou
,
Y.
, and
Jin
,
Y.
,
2009
, “
Mobile Human Airbag System for Fall Protection Using MEMS Sensors and Embedded SVM Classifier
,”
IEEE Sens. J.
,
9
(
5
), pp.
495
503
.
27.
Shan
,
S.
, and
Yuan
,
T.
,
2010
, “
A Wearable Pre-Impact Fall Detector Using Feature Selection and Support Vector Machine
,” IEEE 10th International Conference on Signal Processing (
ICSP
), Beijing, China, Oct. 24–28, pp.
1686
1689
.
28.
Noury
,
N.
,
Rumeau
,
P.
,
Bourke
,
A. K.
,
ÓLaighin
,
G.
, and
Lundy
,
J. E.
,
2008
, “
A Proposal for the Classification and Evaluation of Fall Detectors
,”
IRBM
,
29
(
6
), pp.
340
349
.
29.
Lee
,
J. K.
,
Robinovitch
,
S. N.
, and
Park
,
E. J.
,
2015
, “
Inertial Sensing-Based Pre-Impact Detection of Falls Involving Near-Fall Scenarios
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
258
266
.
30.
O'Haver
,
T.
,
1997
, “
A Pragmatic Introduction to Signal Processing
,” University of Maryland at College Park, College Park, MD, accessed Jan. 14, 2018, https://terpconnect.umd.edu/~toh/spectrum/index.html
31.
Pannurat
,
N.
,
Thiemjarus
,
S.
, and
Nantajeewarawat
,
E.
,
2014
, “
Automatic Fall Monitoring: A Review
,”
Sensors
,
14
(
7
), pp.
12900
12936
.
32.
Saeys
,
Y.
,
Inza
,
I.
, and
Larrañaga
,
P.
,
2007
, “
A Review of Feature Selection Techniques in Bioinformatics
,”
Bioinformatics
,
23
(
19
), pp.
2507
2517
.
33.
Roffo
,
G.
,
Melzi
,
S.
,
Castellani
,
U.
, and
Vinciarelli
,
A.
,
2017
, “
Infinite Latent Feature Selection: A Probabilistic Latent Graph-Based Ranking Approach
,” IEEE International Conference on Computer Vision (
ICCV
), Venice, Italy, Oct. 22–29, pp. 1398–1406.
34.
Kim
,
K. S.
,
Choi
,
H. H.
,
Moon
,
C. S.
, and
Mun
,
C. W.
,
2011
, “
Comparison of k-Nearest Neighbor, Quadratic Discriminant and Linear Discriminant Analysis in Classification of Electromyogram Signals Based on the Wrist-Motion Directions
,”
Curr. Appl. Phys.
,
11
(
3
), pp.
740
745
.
35.
Youn
,
S. H.
,
Sim
,
T.
,
Choi
,
A.
,
Song
,
J.
,
Shin
,
K. Y.
,
Lee
,
I. K.
,
Heo
,
H. M.
,
Lee
,
D.
, and
Mun
,
J. H.
,
2015
, “
Multi-Class Biological Tissue Classification Based on a Multi-Classifier: Preliminary Study of an Automatic Output Power Control for Ultrasonic Surgical Units
,”
Comput. Biol. Med.
,
61
, pp.
92
100
.
36.
Bosch
,
A.
,
Zisserman
,
A.
, and
Munoz
,
X.
,
2007
, “
Image Classification Using Random Forests and Ferns
,”
IEEE 11th International Conference on
Computer Vision (
ICCV
), Rio de Janeiro, Brazil, Oct. 14–21, pp.
1
8
.
37.
Oh
,
S. E.
,
Choi
,
A.
, and
Mun
,
J. H.
,
2013
, “
Prediction of Ground Reaction Forces During Gait Based on Kinematics and a Neural Network Model
,”
J. Biomech.
,
46
(
14
), pp.
2372
2380
.
38.
Mei
,
J.
,
Liu
,
M.
,
Wang
,
Y. F.
, and
Gao
,
H.
,
2016
, “
Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classification
,”
IEEE Trans. Cybern.
,
46
(
6
), pp.
1363
1374
.
39.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
40.
Vedaldi
,
A.
, and
Lenc
,
K.
,
2015
, “
Matconvnet: Convolutional Neural Networks for Matlab
,”
23rd ACM International Conference on Multimedia
, Brisbane, Australia, Oct. 26–30, pp.
689
692
.http://www.vlfeat.org/matconvnet/matconvnet-manual.pdf
41.
Xi
,
X.
,
Keogh
,
E.
,
Shelton
,
C.
,
Wei
,
L.
, and
Ratanamahatana
,
C. A.
,
2006
, “
Fast Time Series Classification Using Numerosity Reduction
,”
23rd International Conference on Machine Learning
, Pittsburgh, PA, June 25–29, pp.
1033
1040
.
42.
Belgiu
,
M.
, and
Drăguţ
,
L.
,
2016
, “
Random Forest in Remote Sensing: A Review of Applications and Future Directions
,”
ISPRS J. Photogramm. Remote Sens.
,
114
, pp.
24
31
.
43.
Chutia
,
D.
,
Bhattacharyya
,
D. K.
,
Sarma
,
K. K.
,
Kalita
,
R.
, and
Sudhakar
,
S.
,
2016
, “
Hyperspectral Remote Sensing Classifications: A Perspective Survey
,”
Trans. GIS
,
20
(
4
), pp.
463
490
.
44.
Wang
,
X.
,
Mueen
,
A.
,
Ding
,
H.
,
Trajcevski
,
G.
,
Scheuermann
,
P.
, and
Keogh
,
E.
,
2013
, “
Experimental Comparison of Representation Methods and Distance Measures for Time Series Data
,”
Data Min. Knowl. Discovery
,
26
(
2
), pp.
275
309
.
45.
Ordóñez
,
F. J.
, and
Roggen
,
D.
,
2016
, “
Deep Convolutional and Lstm Recurrent Neural Networks for Multimodal Wearable Activity Recognition
,”
Sensors
,
16
(
1
), p.
115
.
46.
Yin
,
W.
,
Kann
,
K.
,
Yu
,
M.
, and
Schütze
,
H.
,
2017
, “
Comparative Study of CNN and RNN for Natural Language Processing
,” arXiv preprint
arXiv:1702.01923
.https://arxiv.org/abs/1702.01923
47.
Johansson
,
S.
,
2015
, “
A Machine-Learning Based Approach to Pre-Impact Fall Detection With Wearable Devices: Motion Monitoring Using Sensor Fusion and the Support Vector Machine
,”
M.Sc. thesis
, KTH Royal Institute of Technology, Stockholm, Sweden.http://www.diva-portal.org/smash/get/diva2:840157/FULLTEXT01.pdf
48.
Ronao
,
C. A.
, and
Cho
,
S. B.
,
2016
, “
Human Activity Recognition With Smartphone Sensors Using Deep Learning Neural Networks
,”
Expert Syst. Appl.
,
59
, pp.
235
244
.
You do not currently have access to this content.