During chondrogenesis, tissue organization changes dramatically. We previously showed that the compressive moduli of chondrocytes increase concomitantly with extracellular matrix (ECM) stiffness, suggesting cells were remodeling to adapt to the surrounding environment. Due to the difficulty in analyzing the mechanical response of cells in situ, we sought to create an in silico model that would enable us to investigate why cell and ECM stiffness increased in tandem. The goal of this study was to establish a methodology to segment, quantify, and generate mechanical models of developing cartilage to explore how variations in geometry and material properties affect strain distributions. Multicellular geometries from embryonic day E16.5 and postnatal day P3 murine cartilage were imaged in three-dimensional (3D) using confocal microscopy. Image stacks were processed using matlab to create geometries for finite element analysis using ANSYS. The geometries based on confocal images and isolated, single cell models were compressed 5% and the equivalent von Mises strain of cells and ECM were compared. Our simulations indicated that cells had similar strains at both time points, suggesting that the stiffness and organization of cartilage changes during development to maintain a constant strain profile within cells. In contrast, the ECM at P3 took on more strain than at E16.5. The isolated, single-cell geometries underestimated both cell and ECM strain and were not able to capture the similarity in cell strain at both time points. We expect this experimental and computational pipeline will facilitate studies investigating other model systems to implement physiologically derived geometries.

References

References
1.
Goldring
,
M. B.
, and
Marcu
,
K. B.
,
2009
, “
Cartilage Homeostasis in Health and Rheumatic Diseases
,”
Arthritis Res. Ther.
,
11
(
3
), p.
224
.
2.
Rahmati
,
M.
,
Nalesso
,
G.
,
Mobasheri
,
A.
, and
Mozafari
,
M.
,
2017
, “
Aging and Osteoarthritis: Central Tole of the Extracellular Matrix
,”
Ageing Res. Rev.
,
40
, pp.
20
30
.
3.
Anderson
,
D. E.
, and
Johnstone
,
B.
,
2017
, “
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review
,”
Front. Bioeng. Biotechnol.
,
5
, p.
76
.
4.
Han
,
W. M.
,
Heo
,
S. J.
,
Driscoll
,
T. P.
,
Boggs
,
M. E.
,
Duncan
,
R. L.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2014
, “
Impact of Cellular Microenvironment and Mechanical Perturbation on Calcium Signalling in Meniscus Fibrochondrocytes
,”
Eur. Cells Mater.
,
27
, pp.
321
331
.
5.
Xu
,
X.
,
Li
,
Z.
,
Cai
,
L.
,
Calve
,
S.
, and
Neu
,
C. P.
,
2016
, “
Mapping the Nonreciprocal Micromechanics of Individual Cells and the Surrounding Matrix Within Living Tissues
,”
Sci. Rep.
,
6
, p.
24272
.
6.
Mahmoodian
,
R.
,
Leasure
,
J.
,
Philip
,
P.
,
Pleshko
,
N.
,
Capaldi
,
F.
, and
Siegler
,
S.
,
2011
, “
Changes in Mechanics and Composition of Human Talar Cartilage Anlagen During Fetal Development
,”
Osteoarthritis Cartilage
,
19
(
10
), pp.
1199
1209
.
7.
Prein
,
C.
,
Warmbold
,
N.
,
Farkas
,
Z.
,
Schieker
,
M.
,
Aszodi
,
A.
, and
Clausen-Schaumann
,
H.
,
2016
, “
Structural and Mechanical Properties of the Proliferative Zone of the Developing Murine Growth Plate Cartilage Assessed by Atomic Force Microscopy
,”
Matrix Biol.
,
50
, pp.
1
15
.
8.
Alexopoulos
,
L. G.
,
Youn
,
I.
,
Bonaldo
,
P.
, and
Guilak
,
F.
,
2009
, “
Developmental and Osteoarthritic Changes in Col6A1-Knockout Mice: Biomechanics of Type VI Collagen in the Cartilage Pericellular Matrix
,”
Arthritis Rheumatol.
,
60
(
3
), pp.
771
779
.
9.
Wilusz
,
R. E.
,
DeFrate
,
L. E.
, and
Guilak
,
F.
,
2012
, “
A Biomechanical Role for Perlecan in the Pericellular Matrix of Articular Cartilage
,”
Matrix Biol.
,
31
(
6
), pp.
320
327
.
10.
Nia
,
H. T.
,
Gauci
,
S. J.
,
Azadi
,
M.
,
Hung
,
H. H.
,
Frank
,
E.
,
Fosang
,
A. J.
,
Ortiz
,
C.
, and
Grodzinsky
,
A. J.
,
2015
, “
High-Bandwidth AFM-Based Rheology Is a Sensitive Indicator of Early Cartilage Aggrecan Degradation Relevant to Mouse Models of Osteoarthritis
,”
J. Biomech.
,
48
(
1
), pp.
162
165
.
11.
Xu
,
X.
,
Li
,
Z.
,
Leng
,
Y.
,
Neu
,
C. P.
, and
Calve
,
S.
,
2016
, “
Knockdown of the Pericellular Matrix Molecule Perlecan Lowers In Situ Cell and Matrix Stiffness in Developing Cartilage
,”
Dev. Biol.
,
418
(
2
), pp.
242
247
.
12.
Julkunen
,
P.
,
Wilson
,
W.
,
Isaksson
,
H.
,
Jurvelin
,
J. S.
,
Herzog
,
W.
, and
Korhonen
,
R. K.
,
2013
, “
A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading
,”
Comput. Math. Methods Med.
,
2013
, p.
326150
.
13.
Klika
,
V.
,
Gaffney
,
E. A.
,
Chen
,
Y. C.
, and
Brown
,
C. P.
,
2016
, “
An Overview of Multiphase Cartilage Mechanical Modelling and Its Role in Understanding Function and Pathology
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
139
157
.
14.
Hunziker
,
E. B.
,
Quinn
,
T. M.
, and
Hauselmann
,
H. J.
,
2002
, “
Quantitative Structural Organization of Normal Adult Human Articular Cartilage
,”
Osteoarthritis Cartilage
,
10
(
7
), pp.
564
572
.
15.
Wilson
,
R.
,
Norris
,
E. L.
,
Brachvogel
,
B.
,
Angelucci
,
C.
,
Zivkovic
,
S.
,
Gordon
,
L.
,
Bernardo
,
B. C.
,
Stermann
,
J.
,
Sekiguchi
,
K.
,
Gorman
,
J. J.
, and
Bateman
,
J. F.
,
2012
, “
Changes in the Chondrocyte and Extracellular Matrix Proteome During Post-Natal Mouse Cartilage Development
,”
Mol. Cell. Proteomics
,
11
(
1
), p.
014159
.
16.
Cao
,
L.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2009
, “
Pericellular Matrix Mechanics in the Annulus Fibrosus Predicted by a Three-Dimensional Finite Element Model and In Situ Morphology
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
306
319
.
17.
Cao
,
L.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2011
, “
Three-Dimensional Finite Element Modeling of Pericellular Matrix and Cell Mechanics in the Nucleus Pulposus of the Intervertebral Disk Based on In Situ Morphology
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
1
10
.
18.
Richardson
,
D. S.
, and
Lichtman
,
J. W.
,
2015
, “
Clarifying Tissue Clearing
,”
Cell
,
162
(
2
), pp.
246
257
.
19.
Calve
,
S.
,
Ready
,
A.
,
Huppenbauer
,
C.
,
Main
,
R.
, and
Neu
,
C. P.
,
2015
, “
Optical Clearing in Dense Connective Tissues to Visualize Cellular Connectivity In Situ
,”
PLoS One
,
10
(
1
), p.
e0116662
.
20.
Neu
,
C. P.
,
Novak
,
T.
,
Gilliland
,
K. F.
,
Marshall
,
P.
, and
Calve
,
S.
,
2015
, “
Optical Clearing in Collagen- and Proteoglycan-Rich Osteochondral Tissues
,”
Osteoarthritis Cartilage
,
23
(
3
), pp.
405
413
.
21.
Acuna
,
A.
,
Drakopoulos
,
M. A.
,
Leng
,
Y.
,
Goergen
,
C. J.
, and
Calve
,
S.
,
2018
, “
Three-Dimensional Visualization of Extracellular Matrix Networks During Murine Development
,”
Dev. Biol.
,
435
(
2
), pp.
122
129
.
22.
Felsenthal
,
N.
, and
Zelzer
,
E.
,
2017
, “
Mechanical Regulation of Musculoskeletal System Development
,”
Development
,
144
(
23
), pp.
4271
4283
.
23.
Shea
,
C. A.
,
Rolfe
,
R. A.
, and
Murphy
,
P.
,
2015
, “
The Importance of Foetal Movement for Co-Ordinated Cartilage and Bone Development in Utero: Clinical Consequences and Potential for Therapy
,”
Bone Jt. Res.
,
4
(
7
), pp.
105
116
.
24.
Chan
,
D. D.
,
Cai
,
L.
,
Butz
,
K. D.
,
Trippel
,
S. B.
,
Nauman
,
E. A.
, and
Neu
,
C. P.
,
2016
, “
In Vivo Articular Cartilage Deformation: Noninvasive Quantification of Intratissue Strain During Joint Contact in the Human Knee
,”
Sci. Rep.
,
6
, p.
19220
.
25.
Liu
,
B.
,
Lad
,
N. K.
,
Collins
,
A. T.
,
Ganapathy
,
P. K.
,
Utturkar
,
G. M.
,
McNulty
,
A. L.
,
Spritzer
,
C. E.
,
Moorman
,
C. T.
, III
,
Sutter
,
E. G.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2017
, “
In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking
,”
Am. J. Sports Med.
,
45
(
12
), pp.
2817
2823
.
26.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.
27.
Bradley
,
D.
, and
Roth
,
G.
,
2007
, “
Adapting Thresholding Using the Integral Image
,”
J. Graphics Tools
,
12
(
2
), pp.
13
21
.
28.
Soille
,
P.
,
1999
,
Morphological Image Analysis: Principles and Applications
,
Springer-Verlag
,
Berlin
.
29.
Chan
,
T. F.
, and
Vese
,
L. A.
,
2001
, “
Active Contours Without Edges
,”
IEEE Trans. Image Process.
,
10
(
2
), pp.
266
277
.
30.
Fang
,
Q.
, and
Boas
,
D. A.
,
2009
, “
Tetrahedral Mesh Generation From Volumetric Binary and Gray-Scale Images
,”
IEEE International Symposium on Biomedical Imaging
(
ISBI
), Boston, MA, June 28–July 1, pp.
1142
1145
.
31.
Jin
,
H.
, and
Lewis
,
J. L.
,
2004
, “
Determination of Poisson's Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
138
145
.
32.
Trickey
,
W. R.
,
Baaijens
,
F. P.
,
Laursen
,
T. A.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
,
2006
, “
Determination of the Poisson's Ratio of the Cell: Recovery Properties of Chondrocytes After Release From Complete Micropipette Aspiration
,”
J. Biomech.
,
39
(
1
), pp.
78
87
.
33.
Guo
,
H.
,
Maher
,
S. A.
, and
Torzilli
,
P. A.
,
2014
, “
A Biphasic Multiscale Study of the Mechanical Microenvironment of Chondrocytes Within Articular Cartilage Under Unconfined Compression
,”
J. Biomech.
,
47
(
11
), pp.
2721
2729
.
34.
Sibole
,
S. C.
, and
Erdemir
,
A.
,
2012
, “
Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations
,”
PLoS One
,
7
(
5
), p.
e37538
.
35.
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2007
, “
In-Situ Measurements of Chondrocyte Deformation Under Transient Loading
,”
Eur. Cells Mater.
,
13
, pp.
100
111
.
36.
Han
,
S. K.
,
Federico
,
S.
,
Grillo
,
A.
,
Giaquinta
,
G.
, and
Herzog
,
W.
,
2007
, “
The Mechanical Behaviour of Chondrocytes Predicted With a Micro-Structural Model of Articular Cartilage
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
139
150
.
37.
Han
,
B.
,
Nia
,
H. T.
,
Wang
,
C.
,
Chandrasekaran
,
P.
,
Li
,
Q.
,
Chery
,
D. R.
,
Li
,
H.
,
Grodzinsky
,
A. J.
, and
Han
,
L.
,
2017
, “
AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering
,”
ACS Biomater. Sci. Eng.
,
3
(
9
), pp.
2033
2049
.
38.
Wahlquist
,
J. A.
,
DelRio
,
F. W.
,
Randolph
,
M. A.
,
Aziz
,
A. H.
,
Heveran
,
C. M.
,
Bryant
,
S. J.
,
Neu
,
C. P.
, and
Ferguson
,
V. L.
,
2017
, “
Indentation Mapping Revealed Poroelastic, but Not Viscoelastic, Properties Spanning Native Zonal Articular Cartilage
,”
Acta Biomater.
,
64
, pp.
41
49
.
39.
Cescon
,
M.
,
Gattazzo
,
F.
,
Chen
,
P.
, and
Bonaldo
,
P.
,
2015
, “
Collagen VI at a Glance
,”
J. Cell Sci.
,
128
(
19
), pp.
3525
3531
.
40.
Han
,
L.
,
Grodzinsky
,
A. J.
, and
Ortiz
,
C.
,
2011
, “
Nanomechanics of the Cartilage Extracellular Matrix
,”
Annu. Rev. Mater. Res.
,
41
, pp.
133
168
.
41.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Upton
,
M. L.
,
Youn
,
I.
,
Choi
,
J. B.
,
Cao
,
L.
,
Setton
,
L. A.
, and
Haider
,
M. A.
,
2006
, “
The Pericellular Matrix as a Transducer of Biomechanical and Biochemical Signals in Articular Cartilage
,”
Ann. N. Y. Acad. Sci.
,
1068
, pp.
498
512
.
42.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.
You do not currently have access to this content.