Recent explorations of knee biomechanics have benefited from computational modeling, specifically leveraging advancements in finite element analysis and rigid body dynamics of joint and tissue mechanics. A large number of models have emerged with different levels of fidelity in anatomical and mechanical representation. Adapted modeling and simulation processes vary widely, based on justifiable choices in relation to anticipated use of the model. However, there are situations where modelers' decisions seem to be subjective, arbitrary, and difficult to rationalize. Regardless of the basis, these decisions form the “art” of modeling, which impact the conclusions of simulation-based studies on knee function. These decisions may also hinder the reproducibility of models and simulations, impeding their broader use in areas such as clinical decision making and personalized medicine. This document summarizes an ongoing project that aims to capture the modeling and simulation workflow in its entirety—operation procedures, deviations, models, by-products of modeling, simulation results, and comparative evaluations of case studies and applications. The ultimate goal of the project is to delineate the art of a cohort of knee modeling teams through a publicly accessible, transparent approach and begin to unravel the complex array of factors that may lead to a lack of reproducibility. This manuscript outlines our approach along with progress made so far. Potential implications on reproducibility, on science, engineering, and training of modeling and simulation, on modeling standards, and on regulatory affairs are also noted.

References

References
1.
Maas
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2017
, “
FEBio: History and Advances
,”
Annu. Rev. Biomed. Eng.
,
19
, pp.
279
299
.
2.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
,
DeMers
,
M. S.
,
Rajagopal
,
A.
,
Millard
,
M.
,
Hamner
,
S. R.
,
Arnold
,
E. M.
,
Yong
,
J. R.
,
Lakshmikanth
,
S. K.
,
Sherman
,
M. A.
,
Ku
,
J. P.
, and
Delp
,
S. L.
,
2018
, “
OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput. Biol.
,
14
(
7
), p.
e1006223
.
3.
Kazemi
,
M.
,
Dabiri
,
Y.
, and
Li
,
L. P.
,
2013
, “
Recent Advances in Computational Mechanics of the Human Knee Joint
,”
Comput. Math. Methods Med.
,
2013
, p.
718423
.
4.
Peters
,
A. E.
,
Akhtar
,
R.
,
Comerford
,
E. J.
, and
Bates
,
K. T.
,
2018
, “
Tissue Material Properties and Computational Modelling of the Human Tibiofemoral Joint: A Critical Review
,”
PeerJ.
,
6
, p.
e4298
.
5.
Taylor
,
M.
, and
Prendergast
,
P. J.
,
2015
, “
Four Decades of Finite Element Analysis of Orthopaedic Devices: Where are We Now and What Are the Opportunities?
,”
J. Biomech.
,
48
(
5
), pp.
767
778
.
6.
Erdemir
,
A.
,
Guess
,
T. M.
,
Halloran
,
J.
,
Tadepalli
,
S. C.
, and
Morrison
,
T. M.
,
2012
, “
Considerations for Reporting Finite Element Analysis Studies in Biomechanics
,”
J. Biomech.
,
45
(
4
), pp.
625
633
.
7.
Erdemir
,
A.
,
2016
, “
Open Knee: Open Source Modeling and Simulation in Knee Biomechanics
,”
J. Knee Surg.
,
29
(
2
), pp.
107
116
.
8.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081004
.
9.
Kia
,
M.
,
Schafer
,
K.
,
Lipman
,
J.
,
Cross
,
M.
,
Mayman
,
D.
,
Pearle
,
A.
,
Wickiewicz
,
T.
, and
Imhauser
,
C.
,
2016
, “
A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051010
.
10.
Balci
,
O.
,
2012
, “
A Life Cycle for Modeling and Simulation
,”
Simulation
,
88
(
7
), pp.
870
883
.
11.
Henak
,
C. R.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2013
, “
Subject-Specific Analysis of Joint Contact Mechanics: Application to the Study of Osteoarthritis and Surgical Planning
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021003
.
12.
Maletsky
,
L.
,
Shalhoub
,
S.
,
Fitzwater
,
F.
,
Eboch
,
W.
,
Dickinson
,
M.
,
Akhbari
,
B.
, and
Louie
,
E.
,
2016
, “
In Vitro Experimental Testing of the Human Knee: A Concise Review
,”
J. Knee Surg.
,
29
(
2
), pp.
138
148
.
13.
Guan
,
S.
,
Gray
,
H. A.
,
Keynejad
,
F.
, and
Pandy
,
M. G.
,
2016
, “
Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait
,”
IEEE Trans. Med. Imaging
,
35
(
1
), pp.
326
336
.
14.
Liukkonen
,
M. K.
,
Mononen
,
M. E.
,
Tanska
,
P.
,
Saarakkala
,
S.
,
Nieminen
,
M. T.
, and
Korhonen
,
R. K.
,
2017
, “
Application of a Semi-Automatic Cartilage Segmentation Method for Biomechanical Modeling of the Knee Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
13
), pp.
1453
1463
.
15.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.
16.
Giambini
,
H.
,
Dragomir-Daescu
,
D.
,
Nassr
,
A.
,
Yaszemski
,
M. J.
, and
Zhao
,
C.
,
2016
, “
Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness
,”
ASME J. Biomech. Eng.
,
138
(
9
), p.
091003
.
17.
Westover
,
L. M.
,
Sinaei
,
N.
,
Küpper
,
J. C.
, and
Ronsky
,
J. L.
,
2016
, “
Quantifying In Vivo Laxity in the Anterior Cruciate Ligament and Individual Knee Joint Structures
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
14
), pp.
1567
1577
.
18.
Razu
,
S. S.
, and
Guess
,
T. M.
,
2018
, “
Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
071012
.
19.
Schafer
,
K. A.
,
Tucker
,
S.
,
Griffith
,
T.
,
Sheikh
,
S.
,
Wickiewicz
,
T. L.
,
Nawabi
,
D. H.
,
Imhauser
,
C. W.
, and
Pearle
,
A. D.
,
2016
, “
Distribution of Force in the Medial Collateral Ligament Complex During Simulated Clinical Tests of Knee Stability
,”
Am. J. Sports Med.
,
44
(
5
), pp.
1203
1208
.
20.
Bates
,
N. A.
,
Schilaty
,
N. D.
,
Nagelli
,
C. V.
,
Krych
,
A. J.
, and
Hewett
,
T. E.
,
2018
, “
Validation of Noncontact Anterior Cruciate Ligament Tears Produced by a Mechanical Impact Simulator Against the Clinical Presentation of Injury
,”
Am. J. Sports Med.
,
46
(
9
), pp.
2113
2121
.
21.
Ewing
,
J. A.
,
Kaufman
,
M. K.
,
Hutter
,
E. E.
,
Granger
,
J. F.
,
Beal
,
M. D.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2016
, “
Estimating Patient-Specific Soft-Tissue Properties in a TKA Knee
,”
J. Orthop. Res.
,
34
(
3
), pp.
435
443
.
22.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Kaul
,
V.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
,
V. K.
,
2013
, “
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011002
.
23.
Dhaher
,
Y. Y.
,
Kwon
,
T.-H.
, and
Barry
,
M.
,
2010
, “
The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions
,”
J. Biomech.
,
43
(
16
), pp.
3118
3125
.
24.
Sharifi
,
M.
,
Shirazi-Adl
,
A.
, and
Marouane
,
H.
,
2017
, “
Computational Stability of Human Knee Joint at Early Stance in Gait: Effects of Muscle Coactivity and Anterior Cruciate Ligament Deficiency
,”
J. Biomech.
,
63
, pp.
110
116
.
25.
Ali
,
A. A.
,
Harris
,
M. D.
,
Shalhoub
,
S.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2017
, “
Combined Measurement and Modeling of Specimen-Specific Knee Mechanics for Healthy and ACL-Deficient Conditions
,”
J. Biomech.
,
57
, pp.
117
124
.
26.
Erdemir
,
A.
,
Hunter
,
P. J.
,
Holzapfel
,
G. A.
,
Loew
,
L. M.
,
Middleton
,
J.
,
Jacobs
,
C. R.
,
Nithiarasu
,
P.
,
Löhner
,
R.
,
Wei
,
G.
,
Winkelstein
,
B. A.
,
Barocas
,
V. H.
,
Guilak
,
F.
,
Ku
,
J. P.
,
Hicks
,
J. L.
,
Delp
,
S. L.
,
Sacks
,
M.
,
Weiss
,
J. A.
,
Ateshian
,
G. A.
,
Maas
,
S. A.
,
McCulloch
,
A. D.
, and
Peng
,
G. C. Y.
,
2018
, “
Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
024701
.
27.
Sibole
,
S. C.
, and
Erdemir
,
A.
,
2012
, “
Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations
,”
PLoS One
,
7
(
5
), p.
e37538
.
28.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
,
2006
, “
Biomechanics of Changes in ACL and PCL Material Properties or Prestrains in Flexion Under Muscle Force-Implications in Ligament Reconstruction
,”
Comput. Methods Biomech. Biomed. Eng.
,
9
(
4
), pp.
201
209
.
29.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
,
2009
, “
Analysis of Partial Meniscectomy and ACL Reconstruction in Knee Joint Biomechanics Under a Combined Loading
,”
Clin. Biomech.
,
24
(
9
), pp.
755
761
.
30.
Bates
,
N. A.
,
McPherson
,
A. L.
,
Nesbitt
,
R. J.
,
Shearn
,
J. T.
,
Myer
,
G. D.
, and
Hewett
,
T. E.
,
2017
, “
Robotic Simulation of Identical Athletic-Task Kinematics on Cadaveric Limbs Exhibits a Lack of Differences in Knee Mechanics Between Contralateral Pairs
,”
J. Biomech.
,
53
, pp.
36
44
.
31.
Rao
,
C.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
,
Kim
,
R. H.
, and
Laz
,
P. J.
,
2013
, “
A Statistical Finite Element Model of the Knee Accounting for Shape and Alignment Variability
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1450
1456
.
32.
Nuño
,
N.
, and
Ahmed
,
A. M.
,
2001
, “
Sagittal Profile of the Femoral Condyles and Its Application to Femorotibial Contact Analysis
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
18
26
.
33.
Guo
,
H.
,
Santner
,
T. J.
,
Lerner
,
A. L.
, and
Maher
,
S. A.
,
2017
, “
Reducing Uncertainty When Using Knee-Specific Finite Element Models by Assessing the Effect of Input Parameters
,”
J. Orthop. Res.
,
35
(
10
), pp.
2233
2242
.
34.
Galbusera
,
F.
,
Freutel
,
M.
,
Dürselen
,
L.
,
D'Aiuto
,
M.
,
Croce
,
D.
,
Villa
,
T.
,
Sansone
,
V.
, and
Innocenti
,
B.
,
2014
, “
Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review
,”
Front Bioeng. Biotechnol.
,
2
, p.
54
.
35.
Rachmat
,
H. H.
,
Janssen
,
D.
,
Zevenbergen
,
W. J.
,
Verkerke
,
G. J.
,
Diercks
,
R. L.
, and
Verdonschot
,
N.
,
2014
, “
Generating Finite Element Models of the Knee: How Accurately Can We Determine Ligament Attachment Sites From MRI Scans?
,”
Med. Eng. Phys.
,
36
(
6
), pp.
701
707
.
36.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.
37.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
,
38
(
2
), pp.
323
331
.
38.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.
39.
Erdemir
,
A.
,
Mulugeta
,
L.
, and
Lytton
,
W. W.
,
2015
, “
Ten ‘Not So’ Simple Rules for Credible Practice of Modeling and Simulation in Healthcare: A Multidisciplinary Committee Perspective
,”
Biomedical Engineering Society/Food and Drug Administration Frontiers in Medical Devices Conference: Innovations in Modeling and Simulation
, Washington, DC, May 18–20, 2015.
40.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.
41.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
42.
SimTK
,
2018
, “
SimTK: Reproducibility in Simulation-Based Prediction of Natural Knee Mechanics: Project Home
,” SimTK, accessed Dec. 1, 2018, https://simtk.org/projects/kneehub
43.
NIH
,
2018
, “
Project Information—NIH RePORTER—NIH Research Portfolio Online Reporting Tools Expenditures and Results
,” National Institutes of Health, Bethesda, MD, accessed Dec. 1, 2018, https://projectreporter.nih.gov/project_info_description.cfm?aid=9366122&icde=41076822
44.
SimTK
,
2018
, “
SimTK: Open Knee(s): Virtual Biomechanical Representations of the Knee Joint: Project Home
,” SimTK, accessed Dec. 1, 2018, https://simtk.org/projects/openknee
45.
University of Denver
,
2018
, “Natural Knee Data,” Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, accessed Dec. 1, 2018, https://digitalcommons.du.edu/natural_knee_data/
46.
SimTK
,
2018
, “
Specifications/ExperimentationAnatomicalImaging—Openknee
,” SimTK, accessed Dec. 1, 2018, https://simtk.org/plugins/moinmoin/openknee/Specifications/ExperimentationAnatomicalImaging
47.
SimTK
,
2018
, “
Specifications/ExperimentationJointMechanics—Openknee
,” SimTK, accessed Dec. 1, 2018, https://simtk.org/plugins/moinmoin/openknee/Specifications/ExperimentationJointMechanics
48.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.
49.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
,
2010
, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng. H
,
224
(
7
), pp.
801
812
.
50.
Wilson
,
D. R.
,
Feikes
,
J. D.
,
Zavatsky
,
A. B.
, and
O'Connor
,
J. J.
,
2000
, “
The Components of Passive Knee Movement are Coupled to Flexion Angle
,”
J. Biomech.
,
33
(
4
), pp.
465
473
.
51.
Arilla
,
F. V.
,
Yeung
,
M.
,
Bell
,
K.
,
Rahnemai-Azar
,
A. A.
,
Rothrauff
,
B. B.
,
Fu
,
F. H.
,
Debski
,
R. E.
,
Ayeni
,
O. R.
, and
Musahl
,
V.
,
2015
, “
Experimental Execution of the Simulated Pivot-Shift Test: A Systematic Review of Techniques
,”
Arthroscopy
,
31
(
12
), pp.
2445
2454.
52.
Felson
,
D. T.
,
Nevitt
,
M. C.
,
Yang
,
M.
,
Clancy
,
M.
,
Niu
,
J.
,
Torner
,
J. C.
,
Lewis
,
C. E.
,
Aliabadi
,
P.
,
Sack
,
B.
,
McCulloch
,
C.
, and
Zhang
,
Y.
,
2008
, “
A New Approach Yields High Rates of Radiographic Progression in Knee Osteoarthritis
,”
J. Rheumatol.
,
35
(
10
), pp.
2047
2054
.http://www.jrheum.org/content/35/10/2047.long
53.
Caruthers
,
E. J.
,
Thompson
,
J. A.
,
Chaudhari
,
A. M. W.
,
Schmitt
,
L. C.
,
Best
,
T. M.
,
Saul
,
K. R.
, and
Siston
,
R. A.
,
2016
, “
Muscle Forces and Their Contributions to Vertical and Horizontal Acceleration of the Center of Mass During Sit-to-Stand Transfer in Young, Healthy Adults
,”
J. Appl. Biomech.
,
32
(
5
), pp.
487
503
.
54.
Bland
,
J. M.
, and
Altman
,
D. G.
,
2007
, “
Agreement Between Methods of Measurement With Multiple Observations per Individual
,”
J. Biopharm. Stat.
,
17
(
4
), pp.
571
582
.
55.
Taha
,
A. A.
, and
Hanbury
,
A.
,
2015
, “
An Efficient Algorithm for Calculating the Exact Hausdorff Distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
11
), pp.
2153
2163
.
56.
NASA
,
2016
, “
NASA Technical Standards System (NTSS
),” National Aeronautics and Space Administration, Washington, DC, Document No.
NASA-STD-7009
.https://standards.nasa.gov/standard/nasa/nasa-std-7009
57.
ASME
,
2018
, “
Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices
,” American Society of Mechanical Engineers, New York, Standard No.
V V 40 - 2018
.https://www.asme.org/products/codes-standards/vv-40-2018-assessing-credibility-computational
58.
U.S. FDA
,
2018
, “
Reporting of Computational Modeling Studies in Medical Device Submissions—Guidance for Industry and Food and Drug Administration Staff
,” U.S. Food & Drug Administration, Silver Spring, MD, accessed Dec. 1, 2018, https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM381813.pdf
59.
SimTK
,
2018
, “
ModelDevelopment—Kneehub
,” SimTK, accessed Dec. 1, 2018, https://simtk.org/plugins/moinmoin/kneehub/ModelDevelopment
60.
SimTK
,
2018
, “
SimTK: Reproducibility in Simulation-Based Prediction of Natural Knee Mechanics: Documents
,” SimTK, accessed Dec. 1, 2018, https://simtk.org/docman/?group_id=1061
61.
3D Slicer
,
2018
, “
3D Slicer
,” accessed Dec. 1, 2018, https://www.slicer.org/
62.
MeshLab
,
2018
, “
MeshLab
,” accessed Dec. 1, 2018, http://www.meshlab.net/
63.
Synopsis
,
2018
, “
Simpleware ScanIP
,” Synopsis, Mountain View, CA, accessed Dec. 1, 2018, https://www.synopsys.com/simpleware/products/software/scanip.html
64.
MathWorks
,
2018
, “
MATLAB—MathWorks—MATLAB & Simulink
,” The Mathworks, Natick, MA, accessed Dec. 1, 2018, https://www.mathworks.com/products/matlab.html
65.
Materialise
,
2018
, “3
D Medical Image Processing Software | Materialise Mimics
,” Materialise NV, Leuven, Belgium, accessed Dec. 1, 2018, https://www.materialise.com/en/medical/software/mimics
66.
3D Systems
,
2018
, “
Software
,” 3D Systems, Rock Hill, SC, accessed Dec. 1, 2018, https://www.3dsystems.com/software
67.
SALOME
,
2018
, “
Welcome to the www.Salome-Platform.Org—SALOME Platform
,” SALOME, accessed Dec. 1, 2018, http://www.salome-platform.org/
68.
Altair
,
2018
, “
Large Model Finite Element Preprocessing—Altair HyperMesh
,” Altair, Troy, MI, accessed Dec. 1, 2018, https://altairhyperworks.com/product/hypermesh
69.
MAP
,
2018
, “
Musculoskeletal Atlas Project (MAP) Client Documentation—Latest—MAP Client Latest Documentation
,” accessed Dec. 1, 2018, https://map-client.readthedocs.io/en/latest/
70.
CCAD
,
2018
, “IA-FEMesh,” Center for Computer Aided Design, The University of Iowa, Iowa City, IA, accessed Dec. 1, 2018, https://www.ccad.uiowa.edu/MIMX/projects/IA-FEMesh
71.
FEBio
,
2018
, “
FEBio Software Suite
,” accessed Dec. 1, 2018, https://febio.org/
72.
SIMULIA
,
2018
, “
Abaqus Unified FEA—SIMULIATM by Dassault Systèmes®
,” SIMULIA, Johnston, RI, accessed Dec. 1, 2018, https://www.3ds.com/products- services/simulia/products/abaqus/
73.
MSC
,
2018
, “
Adams—The Multibody Dynamics Simulation Solution
,” MSC Software, Newport Beach, CA, accessed Dec. 1, 2018, http://www.mscsoftware.com/product/adams
74.
Naghibi Beidokhti
,
H.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.
75.
Collins
,
F. S.
, and
Tabak
,
L. A.
,
2014
, “
Policy: NIH Plans to Enhance Reproducibility
,”
Nature
,
505
(
7485
), pp.
612
613
.
76.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
,
Kiapour
,
A.
,
Kim
,
Y. H.
,
Labus
,
K. M.
,
Little
,
J. P.
,
Park
,
W. M.
,
Wang
,
Y. H.
,
Wilke
,
H. J.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.
77.
Britten
,
R. D.
,
Christie
,
G. R.
,
Little
,
C.
,
Miller
,
A. K.
,
Bradley
,
C.
,
Wu
,
A.
,
Yu
,
T.
,
Hunter
,
P.
, and
Nielsen
,
P.
,
2013
, “
FieldML, A Proposed Open Standard for the Physiome Project for Mathematical Model Representation
,”
Med. Biol. Eng. Comput.
,
51
(
11
), pp.
1191
1207
.
78.
Meng
,
Q.
,
Jin
,
Z.
,
Fisher
,
J.
, and
Wilcox
,
R.
,
2013
, “
Comparison Between FEBio and Abaqus for Biphasic Contact Problems
,”
Proc. Inst. Mech. Eng. H
,
227
(
9
), pp.
1009
1019
.
79.
Erdemir
,
A.
,
Guess
,
T. M.
,
Halloran
,
J. P.
,
Modenese
,
L.
,
Reinbolt
,
J. A.
,
Thelen
,
D. G.
, and
Umberger
,
B. R.
,
2016
, “
Commentary on the Integration of Model Sharing and Reproducibility Analysis to Scholarly Publishing Workflow in Computational Biomechanics
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2080
2085
.
80.
U.S. FDA
,
2011
, “
Advancing Regulatory Science at FDA: A Strategic Plan, August 2011
,” U.S. Food & Drug Administration, Silver Spring, MD, accessed Dec. 1, 2018, https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/RegulatoryScience/UCM268225.pdf
81.
U.S. FDA
,
2017
, “
CDRH Regulatory Science Priorities (FY 2017)
,” U.S. Food & Drug Administration, Silver Spring, MD, accessed Dec. 1, 2018, https://www.fda.gov/downloads/medicaldevices/scienceandresearch/ucm521503. pdf
82.
U.S. FDA
,
2018
, “
Medical Device Development Tools (MDDT)
,” U.S. Food & Drug Administration, Silver Spring, MD, accessed Dec. 1, 2018, https://www.fda.gov/medicaldevices/scienceandresearch/medicaldevicedevelopment toolsmddt/
83.
Morrison
,
T. M.
,
Pathmanathan
,
P.
,
Adwan
,
M.
, and
Margerrison
,
E.
,
2018
, “
Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA's Office of Science and Engineering Laboratories
,”
Front. Med.
,
5
, p.
241
.
84.
ASME
,
2018
, “
Committee Pages—V & V 40 Verification and Validation in Computational Modeling of Medical Devices
,” American Society of Mechanical Engineers, New York, accessed Dec. 1, 2018, https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee= 100108782
You do not currently have access to this content.