In the anatomy of a normal spine, due to the curvatures in various regions, the C7 plumb line (C7PL) passes through the sacrum so that the head is centered over the pelvic-ball and socket hip and ankle joints. A failure to recognize malalignment in the sagittal plane can affect the patient's activity as well as social interaction due to deficient forward gaze. The sagittal balance configuration leads to the body undertaking the least muscular activities as possible necessary to maintain spinal balance. Global sagittal imbalance is energy consuming and often results in painful compensatory mechanisms that in turn negatively influence the patient's quality of life, self-image, and social interaction due to inability to maintain a horizontal gaze. Deformity, scoliosis, kyphosis, trauma, and/or surgery are some ways that this optimal configuration can be disturbed, thus requiring higher muscular activity to maintain posture and balance. Several parameters such as the thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), and hip and leg positions influence the sagittal balance and thus the optimal configuration of spinal alignment. This review examines the clinical and biomechanical aspects of spinal imbalance, and the biomechanics of spinal balance as dictated by deformities—ankylosing spondylitis (AS), scoliosis and kyphosis; surgical corrections—pedicle subtraction osteotomies (PSO), long segment stabilizations, and consequent postural complications like proximal and distal junctional kyphosis. The study of the biomechanics involved in spinal imbalance is relatively new and thus the literature is rather sparse. This review suggests several potential research topics in the area of spinal biomechanics.

References

References
1.
Alexander
,
R. M.
,
2004
, “
Bipedal Animals, and Their Differences From Humans
,”
J. Anatomy
,
204
(
5
), pp.
321
330
.
2.
Preuschoft
,
H.
,
2004
, “
Mechanisms for the Acquisition of Habitual Bipedality: Are There Biomechanical Reasons for the Acquisition of Upright Bipedal Posture?
,”
J. Anatomy
,
204
(
5
), pp.
363
384
.
3.
Schlosser
,
T. P.
,
Janssen
,
M. M.
,
Vrtovec
,
T.
,
Pernus
,
F.
,
Oner
,
F. C.
, and
Viergever
,
M. A.
,
2014
, “
Evolution of the Ischio-Iliac Lordosis During Natural Growth and Its Relation With the Pelvic Incidence
,”
Eur. Spine J.
,
23
(
7
), pp.
1433
1441
.
4.
Roussouly
,
P.
, and
Pinheiro-Franco
,
J. L.
,
2011
, “
Sagittal Parameters of the Spine: Biomechanical Approach
,”
Eur. Spine J.
,
20
(
S5
), pp.
578
585
.
5.
Dubousset
J.
,
1994
, “
Three‐Dimensional Analysis of the Scoliotic Deformity
,”
Pediatric Spine: Principles and Practice
,
S. L.
Weinstein
, ed.,
Raven Press
,
New York
, pp.
479
483
.
6.
Jackson
,
R. P.
, and
McManus
,
A. C.
,
1994
, “
Radiographic Analysis of Sagittal Plane Alignment and Balance in Standing Volunteers and Patients With Low Back Pain Matched for Age, Sex, and Size. A Prospective Controlled Clinical Study
,”
Spine
,
19
(
Suppl
.), pp.
1611
1618
.
7.
Iyer
,
S.
,
Lenke
,
L. G.
,
Nemani
,
V. M.
,
Albert
,
T. J.
,
Sides
,
B. A.
,
Metz
,
L. N.
,
Cunningham
,
M. E.
, and
Kim
,
H. J.
,
2016
, “
Variations in Sagittal Alignment Parameters Based on Age: A Prospective Study of Asymptomatic Volunteers Using Full-Body Radiographs
,”
Spine
,
41
(
23
), pp.
1826
1836
.
8.
Roussouly
,
P.
, and
Pinheiro-Franco
,
J. L.
,
2011
, “
Biomechanical Analysis of the Spino-Pelvic Organization and Adaptation in Pathology
,”
Eur. Spine J.
,
20
(
S5
), pp.
609
618
.
9.
Le Huec
,
J. C.
,
Leijssen
,
P.
,
Duarte
,
M.
, and
Aunoble
,
S.
,
2011
, “
Thoracolumbar Imbalance Analysis for Osteotomy Planification Using a New Method: FBI Technique
,”
Eur. Spine J.
,
20
(
S5
), pp.
669
680
.
10.
Lafage
,
R.
,
Schwab
,
F.
,
Glassman
,
S.
,
Bess
,
S.
,
Harris
,
B.
,
Sheer
,
J.
,
Hart
,
R.
,
Line
,
B.
,
Henry
,
J.
,
Burton
,
D.
,
Kim
,
H.
,
Klineberg
,
E.
,
Ames
,
C.
, and
Lafage
,
V.
,
2017
, “
Age-Adjusted Alignment Goals Have the Potential to Reduce PJK
,”
Spine
,
42
(
17
), pp.
1275
1282
.
11.
Lafage
,
R.
,
Schwab
,
F.
,
Challier
,
V.
,
Henry
,
J. K.
,
Gum
,
J.
,
Smith
,
J.
,
Hostin
,
R.
,
Shaffrey
,
C.
,
Kim
,
H. J.
,
Ames
,
C.
,
Scheer
,
J.
,
Klineberg
,
E.
,
Bess
,
S.
,
Burton
,
D.
, and
Lafage
,
V.
,
2016
, “
Defining Spino-Pelvic Alignment Thresholds: Should Operative Goals in Adult Spinal Deformity Surgery Account for Age?
,”
Spine
,
41
(
1
), pp.
62
68
.
12.
Hasegawa
,
K.
,
Okamoto
,
M.
,
Hatsushikano
,
S.
,
Shimoda
,
H.
,
Ono
,
M.
, and
Watanabe
,
K.
,
2016
, “
Normative Values of Spino-Pelvic Sagittal Alignment, Balance, Age, and Health-Related Quality of Life in a Cohort of Healthy Adult Subjects
,”
Eur. Spine J.
,
25
(
11
), pp.
3675
3686
.
13.
Schwab
,
F. J.
,
Blondel
,
B.
,
Bess
,
S.
,
Hostin
,
R.
,
Shaffrey
,
C. I.
,
Smith
,
J. S.
,
Boachie-Adjei
,
O.
,
Burton
,
D. C.
,
Akbarnia
,
B. A.
,
Mundis
,
G. M.
,
Ames
,
C. P.
,
Kebaish
,
K.
,
Hart
,
R. A.
,
Farcy
,
J.-P.
, and
Lafage
,
V.
,
2013
, “
Radiographical Spinopelvic Parameters and Disability in the Setting of Adult Spinal Deformity: A Prospective Multicenter Analysis
,”
Spine
,
38
(
13
), pp.
E803
E812
.
14.
Glassman
,
S. D.
,
Bridwell
,
K.
,
Dimar
,
J. R.
,
Horton
,
W.
,
Berven
,
S.
, and
Schwab
,
F.
,
2005
, “
The Impact of Positive Sagittal Balance in Adult Spinal Deformity
,”
Spine
,
30
(
18
), pp.
2024
2029
.
15.
Terran
,
J.
,
Schwab
,
F.
,
Shaffrey
,
C. I.
,
Smith
,
J. S.
,
Devos
,
P.
,
Ames
,
C. P.
,
Fu
,
K.-M. G.
,
Burton
,
D.
,
Hostin
,
R.
,
Klineberg
,
E.
,
Gupta
,
M.
,
Deviren
,
V.
,
Mundis
,
G.
,
Hart
,
R.
,
Bess
,
S.
, and
Lafage
,
V.
,
2013
, “
The SRS-Schwab Adult Spinal Deformity Classification: Assessment and Clinical Correlations Based on a Prospective Operative and Nonoperative Cohort
,”
Neurosurgery
,
73
(
4
), pp.
559
568
.
16.
Abelin-Genevois
,
K.
,
Sassi
,
D.
,
Verdun
,
S.
, and
Roussouly
,
P.
,
2018
, “
Sagittal Classification in Adolescent Idiopathic Scoliosis: Original Description and Therapeutic Implications
,”
Eur. Spine J.
,
27
(
9
), pp.
2192
2202
.
17.
Roussouly
,
P.
,
Gollogly
,
S.
,
Berthonnaud
,
E.
, and
Dimnet
,
J.
,
2005
, “
Classification of the Normal Variation in the Sagittal Alignment of the Human Lumbar Spine and Pelvis in the Standing Position
,”
Spine
,
30
(
3
), pp.
346
353
.
18.
Boulay
,
C.
,
Tardieu
,
C.
,
Hecquet
,
J.
,
Benaim
,
C.
,
Mouilleseaux
,
B.
,
Marty
,
C.
,
Prat-Pradal
,
D.
,
Legaye
,
J.
,
Duval-Beaupère
,
G.
, and
Pélissier
,
J.
,
2006
, “
Sagittal Alignment of Spine and Pelvis Regulated by Pelvic Incidence: Standard Values and Prediction of Lordosis
,”
Eur. Spine J.
,
15
(
4
), pp.
415
422
.
19.
Laouissat
,
F.
,
Sebaaly
,
A.
,
Gehrchen
,
M.
, and
Roussouly
,
P.
,
2018
, “
Classification of Normal Sagittal Spine Alignment: Refounding the Roussouly Classification
,”
Eur. Spine J.
,
27
(
8
), pp.
2002
2011
.
20.
Barrey
,
C.
,
Jund
,
J.
,
Noseda
,
O.
, and
Roussouly
,
P.
,
2007
, “
Sagittal Balance of the Pelvis-Spine Complex and Lumbar Degenerative Diseases. A Comparative Study About 85 Cases
,”
Eur. Spine J.
,
16
(
9
), pp.
1459
1467
.
21.
Sebaaly
,
A.
,
Grobost
,
P.
,
Mallam
,
L.
, and
Roussouly
,
P.
,
2018
, “
Description of the Sagittal Alignment of the Degenerative Human Spine
,”
Eur. Spine J.
,
27
(
2
), pp.
489
496
.
22.
Berthonnaud
,
E.
,
Dimnet
,
J.
,
Roussouly
,
P.
, and
Labelle
,
H.
,
2005
, “
Analysis of the Sagittal Balance of the Spine and Pelvis Using Shape and Orientation Parameters
,”
J. Spinal Disorders Tech.
,
18
(
1
), pp.
40
47
.
23.
Vialle
,
R.
,
Levassor
,
N.
,
Rillardon
,
L.
,
Templier
,
A.
,
Skalli
,
W.
, and
Guigui
,
P.
,
2005
, “
Radiographic Analysis of the Sagittal Alignment and Balance of the Spine in Asymptomatic Subjects
,”
J. Bone Jt. Surg. Am. Vol.
,
87
(
2
), pp.
260
267
.
24.
Jean
,
L.
,
2014
, “
Influence of Age and Sagittal Balance of the Spine on the Value of the Pelvic Incidence
,”
Eur. Spine J.
,
23
(
7
), pp.
1394
1399
.
25.
Bao
,
H.
,
Liabaud
,
B.
,
Varghese
,
J.
,
Lafage
,
R.
,
Diebo
,
B. G.
,
Jalai
,
C.
,
Ramchandran
,
S.
,
Poorman
,
G.
,
Errico
,
T.
,
Zhu
,
F.
,
Protopsaltis
,
T.
,
Passias
,
P.
,
Buckland
,
A.
,
Schwab
,
F.
, and
Lafage
,
V.
,
2018
, “
Lumbosacral Stress and Age May Contribute to Increased Pelvic Incidence: An Analysis of 1625 Adults
,”
Eur. Spine J.
,
27
(
2
), pp.
482
488
.
26.
Goel
,
V. K.
, and
Clausen
,
J. D.
,
1998
, “
Prediction of Load Sharing Among Spinal Components of a C5-C6 Motion Segment Using the Finite Element Approach
,”
Spine
,
23
(
6
), pp.
684
691
.
27.
Vrtovec
,
T.
,
Janssen
,
M. M.
,
Pernuš
,
F.
,
Castelein
,
R. M.
, and
Viergever
,
M. A.
,
2012
, “
Analysis of Pelvic Incidence From 3-Dimensional Images of a Normal Population
,”
Spine
,
37
(
8
), pp.
E479
E485
.
28.
Lee
,
L. W.
,
Zavarei
,
K.
,
Evans
,
J.
,
Lelas
,
J. J.
,
Riley
,
P. O.
, and
Kerrigan
,
D. C.
,
2005
, “
Reduced Hip Extension in the Elderly: Dynamic or Postural?
,”
Arch. Phys. Med. Rehab.
,
86
(
9
), pp.
1851
1854
.
29.
Yilgor
,
C.
,
Sogunmez
,
N.
,
Boissiere
,
L.
,
Yavuz
,
Y.
,
Obeid
,
I.
,
Kleinstück
,
F.
,
Pérez-Grueso
,
F. J. S.
,
Acaroglu
,
E.
,
Haddad
,
S.
,
Mannion
,
A. F.
,
Pellise
,
F.
, and
Alanay
,
A.
,
2017
, “
Global Alignment and Proportion (GAP) Score: Development and Validation of a New Method of Analyzing Spinopelvic Alignment to Predict Mechanical Complications After Adult Spinal Deformity Surgery
,”
J. Bone Jt. Surg. Am. Vol.
,
99
(
19
), pp.
1661
1672
.
30.
Yilgor
,
C.
,
Yavuz
,
Y.
,
Sogunmez
,
N.
,
Haddad
,
S.
,
Mannion
,
A. F.
,
Abul
,
K.
, and
Acaroglu
,
E.
,
2018
, “
Relative Pelvic Version: An Individualized Pelvic Incidence-Based Proportional Parameter That Quantifies Pelvic Version More Precisely Than Pelvic Tilt
,”
Spine J.
,
18
(
10
), pp.
1787
1797
.
31.
Pesenti
,
S.
,
Lafage
,
R.
,
Stein
,
D.
,
Elysee
,
J. C.
,
Lenke
,
L. G.
,
Schwab
,
F. J.
,
Kim
,
H. J.
, and
Lafage
,
V.
,
2018
, “
The Amount of Proximal Lumbar Lordosis Is Related to Pelvic Incidence
,”
Clin. Orthop. Related Res.
,
476
(
8
), pp.
1603
1611
.
32.
Qian
,
B. P.
,
Jiang
,
J.
,
Qiu
,
Y.
,
Wang
,
B.
,
Yu
,
Y.
, and
Zhu
,
Z. Z.
,
2014
, “The Presence of a Negative Sacral Slope in Patients With Ankylosing Spondylitis With Severe Thoracolumbar Kyphosis,”
J. Bone Jt. Surg. Am. Vol.
,
96
(
22
), p.
e188
.
33.
Schlosser
,
T. P.
,
van Stralen
,
M.
,
Brink
,
R. C.
,
Chu
,
W. C.
,
Lam
,
T. P.
, and
Vincken
,
K. L.
,
2014
, “
Three- Dimensional Characterization of Torsion and Asymmetry of the Intervertebral Discs Versus Vertebral Bodies in Adolescent Idiopathic Scoliosis
,”
Spine
,
39
(
19
), pp.
E1159
E1166
.
34.
Pasha
,
S.
,
Ecker
,
M.
, and
Deeney
,
V.
,
2018
, “
Considerations in Sagittal Evaluation of the Scoliotic Spine
,”
Eur. J. Orthop. Surg. Traumatol.
,
28
(
6
), pp.
1039
1045
.
35.
Duval-Beaupere
,
G.
,
Schmidt
,
C.
, and
Cosson
,
P.
,
1992
, “
A Barycentremetric Study of the Sagittal Shape of Spine and Pelvis: The Conditions Required for an Economic Standing Position
,”
Ann. Biomed. Eng.
,
20
(
4
), pp.
451
462
.
36.
Makhni
,
M. C.
,
Shillingford
,
J. N.
,
Laratta
,
J. L.
,
Hyun
,
S. J.
, and
Kim
,
Y. J.
,
2018
, “
Restoration of Sagittal Balance in Spinal Deformity Surgery
,”
J. Korean Neurosurg. Soc.
,
61
(
2
), pp.
167
179
.
37.
Pasha
,
S.
, and
Baldwin
,
K.
,
2018
, “
Are we Simplifying Balance Evaluation in Adolescent Idiopathic Scoliosis?
,”
Clin. Biomech.
,
51
, pp.
91
98
.
38.
Ilharreborde
,
B.
,
2018
, “
Sagittal Balance and Idiopathic Scoliosis: Does Final Sagittal Alignment Influence Outcomes, Degeneration Rate or Failure Rate?
,”
Eur. Spine J.
,
27
(
Suppl. 1
), pp.
S48
S58
.
39.
Lin
,
N.
,
Li
,
Y.
,
Bebawy
,
J. F.
,
Dong
,
J.
, and
Hua
,
L.
,
2015
, “
Abdominal Circumference but Not the Degree of Lumbar Flexion Affects the Accuracy of Lumbar Interspace Identification by Tuffier's Line Palpation Method: An Observational Study
,”
BMC Anesthesiol.
,
15
(
1
), p.
9
.
40.
Kong
,
W. Z.
,
Goel
,
V. K.
,
Gilbertson
,
L. G.
, and
Weinstein
,
J. N.
,
1996
, “
Effects of Muscle Dysfunction on Lumbar Spine Mechanics: A Finite Element Study Based on a Two Motion Segments Model
,”
Spine
,
21
(
19
), pp.
2197
2206
.
41.
Lee
,
S. M.
,
Suk
,
S. I.
, and
Chung
,
E. R.
,
2004
, “
Direct Vertebral Rotation: A New Technique of Three- Dimensional Deformity Correction With Segmental Pedicle Screw Fixation in Adolescent Idiopathic Scoliosis
,”
Spine
,
29
(
3
), pp.
343
349
.
42.
Katzman
,
W. B.
,
Parimi
,
N.
,
Gladin
,
A.
,
Fan
,
B.
,
Wong
,
S. S.
,
Mergenthaler
,
J.
, and
Lane
,
N. E.
,
2018
, “
Reliability of Sagittal Vertical Axis Measurement and Association With Measures of Age-Related Hyperkyphosis
,”
J. Phys. Ther. Sci.
,
30
(
12
), pp.
1417
1423
.
43.
Glassman
,
S. D.
,
Berven
,
S.
,
Bridwell
,
K.
,
Horton
,
W.
, and
Dimar
,
J. R.
,
2005
, “
Correlation of Radiographic Parameters and Clinical Symptoms in Adult Scoliosis
,”
Spine
,
30
(
6
), pp.
682
688
.
44.
Newton
,
P. O.
,
Fujimori
,
T.
,
Doan
,
J.
,
Reighard
,
F. G.
,
Bastrom
,
T. P.
, and
Misaghi
,
A.
,
2015
, “
Defining the ‘Three-Dimensional Sagittal Plane’ in Thoracic Adolescent Idiopathic Scoliosis
,”
J. Bone Jt. Surg. Am. Vol.
,
97
(
20
), pp.
1694
1701
.
45.
Pasha
,
S.
,
Cahill
,
P. J.
,
Dormans
,
J. P.
, and
Flynn
,
J. M.
,
2016
, “
Characterizing the Differences Between the 2D and 3D Measurements of Spine in Adolescent Idiopathic Scoliosis
,”
Eur. Spine J.
,
25
(
10
), pp.
3137
3145
.
46.
Yoshimoto
,
H.
,
Sato
,
S.
,
Masuda
,
T.
,
Kanno
,
T.
,
Shundo
,
M.
,
Hyakumachi
,
T.
, and
Yanagibashi
,
Y.
,
2005
, “
Spinopelvic Alignment in Patients With Osteoarthrosis of the Hip: A Radiographic Comparison to Patients With Low Back Pain
,”
Spine
,
30
(
14
), pp.
1650
1657
.
47.
Sultan
,
A. A.
,
Khlopas
,
A.
,
Piuzzi
,
N. S.
,
Chughtai
,
M.
,
Sodhi
,
N.
, and
Mont
,
M. A.
,
2017
, “
The Impact of Spino-Pelvic Alignment on Total Hip Arthroplasty Outcomes; a Critical Analysis of Current Evidence
,”
J. Arthroplasty
,
33
(
5
), pp.
1606
1616
.https://reader.elsevier.com/reader/sd/pii/S0883540317310264?token=49BAEFC9AFF164AFA56467314B7AA00B2D6F9EF5B936FD079ED8417C03AB8D79D2B138D279A08F266E347F05FAA4C373
48.
Hart
,
R. A.
,
McCarthy
,
I.
,
Ames
,
C. P.
,
Shaffrey
,
C. I.
,
Hamilton
,
D. K.
, and
Hostin
,
R.
,
2013
, “
Proximal Junctional Kyphosis and Proximal Junctional Failure
,”
Neurosurg. Clin. North Am.
,
24
(
2
), pp.
213
218
.
49.
Suk
,
K. S.
,
Kim
,
K. T.
,
Lee
,
S. H.
, and
Kim
,
J. M.
,
2003
, “
Significance of Chin-Brow Vertical Angle in Correction of Kyphotic Deformity of Ankylosing Spondylitis Patients
,”
Spine
,
28
(
17
), pp.
2001
2005
.
50.
Roussouly
,
P.
, and
Nnadi
,
C.
,
2010
, “
Sagittal Plane Deformity: An Overview of Interpretation and Management
,”
Eur. Spine J.
,
19
(
11
), pp.
1824
1836
.
51.
Barrey
,
C.
,
Roussouly
,
P.
,
Le Huec
,
J.-C.
,
D'Acunzi
,
G.
, and
Perrin
,
G.
,
2013
, “
Compensatory Mechanisms Contributing to Keep the Sagittal Balance of the Spine
,”
Eur. Spine J.
,
22
(
S6
), pp.
834
841
.
52.
Diebo
,
B. G.
,
Ferrero
,
E.
,
Lafage
,
R.
,
Challier
,
V.
,
Liabaud
,
B.
,
Liu
,
S.
,
Vital
,
J.-M.
,
Errico
,
T. J.
,
Schwab
,
F. J.
, and
Lafage
,
V.
,
2015
, “
Recruitment of Compensatory Mechanisms in Sagittal Spinal Malalignment is Age and Regional Deformity Dependent: A Full-Standing Axis Analysis of Key Radiographical Parameters
,”
Spine
,
40
(
9
), pp.
642
649
.
53.
Protopsaltis
,
T. S.
,
Scheer
,
J. K.
,
Terran
,
J. S.
,
Smith
,
J. S.
,
Hamilton
,
D. K.
, and
Kim
,
H. J.
,
2015
, “
How the Neck Affects the Back: Changes in Regional Cervical Sagittal Alignment Correlate to HRQOL Improvement in Adult Thoracolumbar Deformity Patients at 2-Year Follow-Up
,”
J. Neurosurg.: Spine
,
23
(
2
), pp.
153
158
.
54.
Shah
,
A.
,
Zavatsky
,
J.
,
McGuire
,
R.
,
Serhan
,
H.
,
Briski
,
D.
, and
Goel
,
V.
,
2016
, “
Does the Location of Prophylactic Vertebral Cement Above Long-Segment Fusion Constructs Effect Endplate Stress: A Finite Element Model
,”
Global Spine J.
,
6
(
Suppl. 1
), p.
s0036
.
55.
Cheng
,
X.
,
Zhang
,
K.
,
Sun
,
X.
,
Zhao
,
C.
,
Li
,
H.
, and
Zhao
,
J.
,
2017
, “
Analysis of Compensatory Mechanisms in the Pelvis and Lower Extremities in Patients With Pelvic Incidence and Lumbar Lordosis Mismatch
,”
Gait Posture
,
56
, pp.
14
18
.
56.
Lafage
,
R.
,
Liabaud
,
B.
,
Diebo
,
B. G.
,
Oren
,
J. H.
,
Vira
,
S.
,
Pesenti
,
S.
,
Protopsaltis
,
T. S.
,
Errico
,
T. J.
,
Schwab
,
F. J.
, and
Lafage
,
V.
,
2017
, “
Defining the Role of the Lower Limbs in Compensating for Sagittal Malalignment
,”
Spine
,
42
(
22
), pp.
E1282
E1288
.
57.
Kim
,
Y. J.
,
Bridwell
,
K. H.
,
Lenke
,
L. G.
,
Glattes
,
C. R.
,
Rhim
,
S.
, and
Cheh
,
G.
,
2008
, “
Proximal Junctional Kyphosis in Adult Spinal Deformity After Segmental Posterior Spinal Instrumentation and Fusion: Minimum Five-Year Follow-Up
,”
Spine
,
33
(
20
), pp.
2179
2184
.
58.
Kim
,
K.-T.
,
Suk
,
K.-S.
,
Cho
,
Y.-J.
,
Hong
,
G.-P.
, and
Park
,
B.-J.
,
2002
, “
Clinical Outcome Results of Pedicle Subtraction Osteotomy in Ankylosing Spondylitis With Kyphotic Deformity
,”
Spine
,
27
(
6
), pp.
612
618
.
59.
Schwab
,
F.
,
Patel
,
A.
,
Ungar
,
B.
,
Farcy
,
J. P.
, and
Lafage
,
V.
,
2010
, “
Adult Spinal Deformity-Postoperative Standing Imbalance: How Much Can You Tolerate? An Overview of Key Parameters in Assessing Alignment and Planning Corrective Surgery
,”
Spine
,
35
(
25
), pp.
2224
2231
.
60.
Mac-Thiong
,
J. M.
,
Labelle
,
H.
, and
Roussouly
,
P.
,
2011
, “
Pediatric Sagittal Alignment
,”
Eur. Spine J.
,
20
(
S5
), pp.
586
590
.
61.
Le Huec
,
J. C.
,
Charosky
,
S.
,
Barrey
,
C.
,
Rigal
,
J.
, and
Aunoble
,
S.
,
2011
, “
Sagittal Imbalance Cascade for Simple Degenerative Spine and Consequences: Algorithm of Decision for Appropriate Treatment
,”
Eur. Spine J.
,
20
(
S5
), pp.
699
703
.
62.
Gill
,
J. B.
,
Levin
,
A.
,
Burd
,
T.
, and
Longley
,
M.
,
2008
, “
Corrective Osteotomies in Spine Surgery
,”
J. Bone Jt. Surg. Am. Vol.
,
90
(
11
), pp.
2509
2520
.
63.
Lehman
,
R. A.
,
Kang
,
D. G.
,
Wagner
,
S. C.
,
Paik
,
H.
,
Cardoso
,
M. J.
,
Bernstock
,
J. D.
, and
Dmitriev
,
A. E.
,
2015
, “
Biomechanical Stability of Transverse Connectors in the Setting of a Thoracic Pedicle Subtraction Osteotomy
,”
Spine J.
,
15
(
7
), pp.
1629
1635
.
64.
Smith
,
J. S.
,
Bess
,
S.
,
Shaffrey
,
C. I.
,
Burton
,
D. C.
,
Hart
,
R. A.
,
Hostin
,
R.
, and
Klineberg
,
D.
,
2012
, “
Dynamic Changes of the Pelvis and Spine Are Key to Predicting Postoperative Sagittal Alignment After Pedicle Subtraction Osteotomy: A Critical Analysis of Preoperative Planning Techniques
,”
Spine
,
37
(
10
), pp.
845
853
.
65.
Cho
,
K.-J.
,
Bridwell
,
K. H.
,
Lenke
,
L. G.
,
Berra
,
A.
, and
Baldus
,
C.
,
2005
, “
Comparison of Smith-Peterson Versus Pedicle Subtraction Osteotomy for the Correction of Fixed Sagittal Imbalance
,”
Spine (Phila Pa 1976)
,
30
(
18
), pp.
2033
2037
.
66.
Simkin
,
P. A.
,
Downey
,
D. J.
, and
Kilcoyne
,
R. F.
,
1988
, “
Apophyseal Arthritis Limits Lumbar Motion in Patients With Ankylosing Spondylitis
,”
Arthritis Rheum.
,
31
(
6
), pp.
798
802
.
67.
Booth
,
R. E.
, Jr.
,
Simpson
,
M. J.
, and
Herkowitz
,
H. N.
,
1999
, “
Arthritis of the Spine
,”
Richard H. Rothman-Simeone: The Spine
,
4th ed.
,
WB Saunders
,
Philadelphia, PA
.
68.
Kuroki
,
H.
,
Holekamp
,
S.
,
Goel
,
V.
,
Panjabi
,
M.
,
Ebraheim
,
N.
, and
Singer
,
K.
,
2004
, “
Biomechanics of Spinal Deformity in Inflammatory Disease
,”
Inflammatory Diseases of the Spine
, S. Govender and J. C. Y. Leong, eds.,
TIG Asia Media
,
Singapore
, pp.
01-1
01-20
.
69.
Cheng
,
C. K.
,
Chen
,
P. Q.
,
Tsuang
,
Y. H.
,
Lin
,
S. W.
, and
Lee
,
W. L.
,
1994
, “
Muscular Activities in Ankylosing Spondylitic Patients—A Surface EMG Study
,”
J. Orthop. Surg. Taiwan
,
11
(
6
), pp.
321
326
.https://www.researchgate.net/publication/267868835_Muscular_activities_in_ankylosing_spondylitic_patients_-_a_surface_EMG_study
70.
Goel
,
V.
, and
Njus
,
G.
,
1986
, “
Stress-Strina Characteristic of Spinal Ligaments
,”
32nd Transactions of the Orthopaedic Research Society
, New Orleans, LA, Feb. 17–20, pp.
1
2
.
71.
Martin
,
R. B.
,
Burr
,
D. B.
,
Sharkey
,
N. A.
, and
Fyhrie
,
D. P.
,
2015
,
Skeletal Tissue Mechanics
,
Springer
,
New York
.
72.
Wilson
,
S. E.
,
1999
, “
Assessment of Forces on the Thoracolumbar Spine During a Fall with Application Toward Predicting Vertebral Fracture Risk
,” Ph.D. dissertation,
Massachusetts Institute of Technology
,
Boston, MA
.
73.
Helliwell
,
P. S.
,
Smeathers
,
J. E.
, and
Wright
,
V.
,
1989
, “
Shock Absorption by the Spinal Column in Normals and in Ankylosing Spondylitis
,”
Proc. Inst. Mech. Eng., Part H
,
203
(
4
), pp.
187
190
.
74.
Smith
,
J. S.
,
Sansur
,
C. A.
,
Donaldson
,
W. F.
,
Perra
,
J. H.
,
Mudiyam
,
R.
,
Choma
,
T. J.
,
Zeller
,
R. D.
,
Knapp
,
D. R.
,
Noordeen
,
H. H.
,
Berven
,
S. H.
,
Goytan
,
M. J.
,
Boachie-Adjei
,
O.
, and
Shaffrey
,
C. I.
,
2011
, “
Short-Term Morbidity and Mortality Associated With Correction of Thoracolumbar Fixed Sagittal Plane Deformity: A Report From the Scoliosis Research Society Morbidity and Mortality Committee
,”
Spine
,
36
(
12
), pp.
958
964
.
75.
Charles
,
Y. P.
,
Yu
,
B.
, and
Steib
,
J.-P.
,
2016
, “
Sacroiliac Joint Luxation After Pedicle Subtraction Osteotomy: Report of Two Cases and Analysis of Failure Mechanism
,”
Eur. Spine J.
,
25
(
S1
), pp.
63
74
.
76.
Smith
,
J. S.
,
Shaffrey
,
C. I.
,
Ames
,
C. P.
,
Demakakos
,
J.
,
Fu
,
K.-M. G.
,
Keshavarzi
,
S.
,
Li
,
C. M. Y.
,
Deviren
,
V.
,
Schwab
,
F. J.
,
Lafage
,
V.
, and
Bess
,
S.
,
2012
, “
Assessment of Symptomatic Rod Fracture After Posterior Instrumented Fusion for Adult Spinal Deformity
,”
Neurosurgery
,
71
(
4
), pp.
862
868
.
77.
Barrey
,
C.
,
Perrin
,
G.
,
Michel
,
F.
,
Vital
,
J.-M.
, and
Obeid
,
I.
,
2014
, “
Pedicle Subtraction Osteotomy in the Lumbar Spine: Indications, Technical Aspects, Results and Complications
,”
Eur. J. Orthop. Surg. Traumatol.
,
24
(
1
), pp.
21
30
.
78.
Cho
,
K.-J.
,
Kim
,
K.-T.
,
Kim
,
W.-J.
,
Lee
,
S.-H.
,
Jung
,
J.-H.
,
Kim
,
Y.-T.
, and
Park
,
H.-B.
,
2013
, “
Pedicle Subtraction Osteotomy in Elderly Patients With Degenerative Sagittal Imbalance
,”
Spine
,
38
(
24
), pp.
E1561
E1566
.
79.
Hyun
,
S.-J.
,
Lenke
,
L. G.
,
Kim
,
Y.-C.
,
Koester
,
L. A.
, and
Blanke
,
K. M.
,
2014
, “
Comparison of Standard 2-Rod Constructs to Multiple-Rod Constructs for Fixation Across 3-Column Spinal Osteotomies
,”
Spine
,
39
(
22
), pp.
1899
1904
.
80.
Seyed Vosoughi
,
A.
,
2017
, “
Mitigating the Biomechanical Complications Following Pedicle Subtraction Osteotomy: A Finite Element Analysis
,” Electronic Thesis or Dissertation, accessed May 10, 2019, http://rave.ohiolink.edu/etdc/view?acc_num=toledo1503598742789914
81.
Vosoughi
,
A. S.
,
Joukar
,
A.
,
Kiapour
,
A.
,
Parajuli
,
D.
,
Agarwal
,
A. K.
,
Goel
,
V. K.
, and
Zavatsky
,
J.
,
2018
, “
Optimal Satellite Rod Constructs to Mitigate Rod Failure Following Pedicle Subtraction Osteotomy (PSO): A Finite Element Study
,”
Spine J.
,
5
(
5
), pp.
931
941
.
82.
Goel
,
V. K.
,
Grauer
,
J. N.
,
Patel
,
T. C.
,
Biyani
,
A.
,
Sairyo
,
K.
,
Vishnubhotla
,
S.
,
Matyas
,
A.
,
Cowgill
,
I.
,
Shaw
,
M.
,
Long
,
R.
,
Dick
,
D.
,
Panjabi
,
M. M.
, and
Serhan
,
H.
,
2005
, “
Effects of Charite Artificial Disc on the Implanted and Adjacent Spinal Segments Mechanics Using a Hybrid Testing Protocol
,”
Spine
,
30
(
24
), pp.
2755
2764
.
83.
Goel
,
V. K.
,
Mehta
,
A.
,
Jangra
,
J.
,
Faizan
,
A.
,
Kiapour
,
A.
,
Hoy
,
R. W.
, and
Fauth
,
A. R.
,
2007
, “
Anatomic Facet Replacement System (AFRS) Restoration of Lumbar Segment Mechanics to Intact: A Finite Element Study and In Vitro Cadaver Investigation
,”
SAS J.
,
1
(
1
), pp.
46
54
.
84.
Palepu
,
V.
,
2013
, “
Biomechanical Effects of Initial Occupant Seated Posture Due to Rear End Impact Injury
,”
The University of Toledo
,
Toledo, OH
, Electronic Thesis or Dissertation, accessed May 10, 2019, https://etd.ohiolink.edu/.
85.
Goffin
,
J. M.
,
Pankaj
,
P.
, and
Simpson
,
A. H.
,
2014
, “
A Computational Study on the Effect of Fracture Intrusion Distance in Three‐and Four‐Part Trochanteric Fractures Treated With Gamma Nail and Sliding Hip Screw
,”
J. Orthop. Res.
,
32
(
1
), pp.
39
45
.
86.
Sachin
,
G.
,
Eski
,
M. S.
,
Durbin-Johnson
,
B.
,
Ames
,
C.
,
Deviren
,
V.
, and
Gupta
,
M.
,
2014
, “
Four Rods Prevent Rod Breakage and Pseudarthrosis in Pedicle Subtraction Osteotomies: GP243
,”
Spine Journal Meeting Abstracts
, LWW, pp.
269
270
.
87.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
,
2003
, “
Effect of Compressive Follower Preload on the Flexion–Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.
88.
Okamoto
,
Y.
,
Murakami
,
H.
,
Demura
,
S.
,
Kato
,
S.
,
Yoshioka
,
K.
,
Hayashi
,
H.
,
Sakamoto
,
J.
,
Kawahara
,
N.
, and
Tsuchiya
,
H.
,
2015
, “
The Effect of Kyphotic Deformity Because of Vertebral Fracture: A Finite Element Analysis of a 10 and 20 Wedge-Shaped Vertebral Fracture Model
,”
Spine J.
,
15
(
4
), pp.
713
720
.
89.
Filardi
,
V.
,
Simona
,
P.
,
Cacciola
,
G.
,
Bertino
,
S.
,
Soliera
,
L.
,
Barbanera
,
A.
,
Pisani
,
A.
,
Milardi
,
D.
, and
Alessia
,
B.
,
2017
, “
Finite Element Analysis of Sagittal Balance in Different Morphotype: Forces and Resulting Strain in Pelvis and Spine
,”
J. Orthop.
,
14
(
2
), pp.
268
275
.
90.
Matsumoto
,
K.
,
Shah
,
A.
,
Agarwal
,
A.
, and
Goel
,
V.
,
2018
, “
Biomechanics of the Relationship Between Adjacent Segment Disease (ASD) After Lumbar Arthrodesis and Sagittal Imbalance: A Finite Element Study
,”
Global Spine J.
,
8
(
1S
), pp.
174S
374S
.
91.
Matsumoto
,
K.
,
Shah
,
A.
,
Agarwal
,
A.
, and
Goel
,
V.
,
2019
, “
Correlation Between Adjacent Segment Disease After Posterior Lumbar Fusion and Sagittal Imbalance: A Finite Element Study
,”
Orthop. Res. Soc.
,
44
(
PS2-088
), p.
1665
.
92.
Ivanov
,
A. A.
,
Kiapour
,
A.
,
Ebraheim
,
N. A.
, and
Goel
,
V.
,
2009
, “
Lumbar Fusion Leads to Increases in Angular Motion and Stress Across Sacroiliac Joint: A Finite Element Study
,”
Spine
,
34
(
5
), pp.
162
169
.
93.
Joukar
,
A.
,
Shah
,
A.
,
Kiapour
,
A.
,
Vosoughi
,
A. S.
,
Duhon
,
B.
,
Agarwal
,
A. K.
,
Elgafy
,
H.
,
Ebraheim
,
N.
, and
Goel
,
V. K.
,
2018
, “
Gender Specific Sacroiliac Joint Biomechanics During Standing Upright: A Finite Element Study
,”
Spine
,
43
(
18
), p.
1
.
94.
Shin
,
M. H.
,
Ryu
,
K. S.
,
Hur
,
J. W.
,
Kim
,
J. S.
, and
Park
,
C. K.
,
2013
, “
Comparative Study of Lumbopelvic Sagittal Alignment Between Patients With and Without Sacroiliac Joint Pain After Lumbar Interbody Fusion
,”
Spine
,
38
(
21
), pp.
E1334
E1341
.
95.
Rhee
,
J. M.
,
Bridwell
,
K. H.
,
Won
,
D. S.
,
Lenke
,
L. G.
,
Chotigavanichaya
,
C.
, and
Hanson
,
D. S.
,
2002
, “
Sagittal Plane Analysis of Adolescent Idiopathic Scoliosis: The Effect of Anterior Versus Posterior Instrumentation
,”
Spine (Phila Pa 1976)
,
27
(
21
), pp.
2350
2356
.
96.
Lee
,
G. A.
,
Betz
,
R. R.
,
Clements
, III
,
D. H.
, and
Huss
,
G. K.
,
1999
, “
Proximal Kyphosis After Posterior Spinal Fusion in Patients With Idiopathic Scoliosis
,”
Spine
,
24
(
8
), pp.
795
799
.
97.
Buchl
,
E.
,
Shelokov
,
A.
,
Ganer
,
J.
, and
Hostin
,
R.
,
2007
, “
P47—Outcomes of Pedicle Subtraction Osteotomies for Fixed Sagittal Imbalance
,”
Spine J.
,
7
(
5
), pp.
104S
105S
.
98.
Wang
,
J.
,
Zhao
,
Y.
,
Shen
,
B.
,
Wang
,
C.
, and
Li
,
M.
,
2010
, “
Risk Factor Analysis of Proximal Junctional Kyphosis After Posterior Fusion in Patients With Idiopathic Scoliosis
,”
Injury
,
41
(
4
), pp.
415
420
.
99.
Denis
,
F.
,
Sun
,
E. C.
, and
Winter
,
R. B.
,
2009
, “
Incidence and Risk Factors for Proximal and Distal Junctional Kyphosis Following Surgical Treatment for Scheuermann Kyphosis: Minimum Five-Year Follow-Up
,”
Spine
,
34
(
20
), pp.
E729
E734
.
100.
Belkoff
,
S. M.
,
Mathis
,
J. M.
,
Jasper
,
L. E.
, and
Deramond
,
H.
,
2001
, “
The Biomechanics of Vertebroplasty: The Effect of Cement Volume on Mechanical Behavior
,”
Spine
,
26
(
14
), pp.
1537
1541
.
101.
Hollenbeck
,
S. M.
,
Glattes
,
R. C.
,
Asher
,
M. A.
,
Lai
,
S. M.
, and
Burton
,
D. C.
,
2008
, “
The Prevalence of Increased Proximal Junctional Flexion Following Posterior Instrumentation and Arthrodesis for Adolescent Idiopathic Scoliosis
,”
Spine
,
33
(
15
), pp.
1675
1681
.
102.
Cahill
,
P. J.
,
Wang
,
W.
,
Asghar
,
J.
,
Booker
,
R.
,
Betz
,
R. R.
,
Ramsey
,
C.
, and
Baran
,
G.
,
2012
, “
The Use of a Transition Rod May Prevent Proximal Junctional Kyphosis in the Thoracic Spine After Scoliosis Surgery
,”
Spine
,
37
(
12
), pp.
E687
E695
.
103.
Metzger
,
M. F.
,
Robinson
,
S. T.
,
Svet
,
M. T.
,
Liu
,
J. C.
, and
Acosta
,
F. L.
,
2016
, “
Biomechanical Analysis of the Proximal Adjacent Segment After Multilevel Instrumentation of the Thoracic Spine: Do Hooks Ease the Transition?
,”
Global Spine J.
,
6
(
4
), pp.
335
343
.
104.
Schmoelz
,
W.
,
Huber
,
J. F.
,
Nydegger
,
T.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2003
, “
Dynamic Stabilization of the Lumbar Spine and Its Effects on Adjacent Segments: An In Vitro Experiment
,”
J. Spinal Disorders Tech.
,
16
(
4
), pp.
418
423
.
105.
Gomleksiz
,
C.
,
Sasani
,
M.
,
Oktenoglu
,
T.
, and
Ozer
,
A. F.
,
2012
, “
A Short History of Posterior Dynamic Stabilization
,”
Adv. Orthop.
,
2012
, pp.
1
12
.
106.
Raman
,
T.
,
Miller
,
E.
,
Martin
,
C. T.
, and
Kebaish
,
K. M.
,
2017
, “
The Effect of Prophylactic Vertebroplasty on the Incidence of Proximal Junctional Kyphosis and Proximal Junctional Failure Following Posterior Spinal Fusion in Adult Spinal Deformity: A 5-Year Follow-Up Study
,”
Spine J.
,
17
(
10
), pp.
1489
1498
.
107.
Zavatsky
,
J.
,
Shah
,
A.
,
McGuire
,
R.
,
Serhan
,
H.
,
Kelkar
,
A.
,
Kodigudla
,
M.
,
Agarwal
,
A.
, and
Goel
,
V.
,
2016
, “
Reduced Rate of Proximal Junctional Fractures Above Long-Segment Instrumented Constructs Utilizing a Tapered Dose of Bone Cement for Prophylactic Vertebroplasty, a Biomechanical Investigation
,”
Global Spine J.
,
6
(
S 01
), p.
GO297
.
108.
Shah
,
A.
,
McGuire
,
R.
,
Serhan
,
H.
,
Briski
,
D.
,
Goel
,
V.
, and
Zavatsky
,
J.
,
2017
, “
Calculation of Optimal Bone Cement Dosage and Location for Prophylactic Vertebroplasty During Long Thoracolumbar Fusion to Reduce the Occurrence of Proximal Junction Kyphosis (PJK)—A Finite Element Study
,”
Orthop. Res. Soc.
,
42
(
PS1-038
), p.
789
.
You do not currently have access to this content.