The mitral valve (MV) is the left atrioventricular heart valve that regulates blood flow between the left atrium and left ventricle (LV) during the cardiac cycle. Contrary to the aortic valve (AV), the MV is an intimately coupled, fully functional part of the LV. In situations where the MV fails to fully close during systole, the resulting blood regurgitation into the left atrium typically causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV regurgitation can be either primary (e.g., myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically induced by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by leaflet tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed toward optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales. Moreover, we show the state-of-the-art means to produce patient-specific MV computational models to develop quantitatively optimized devices and procedures for MV repair.

References

References
1.
Atluri
,
P.
,
Panlilio
,
C. M.
,
Liao
,
G. P.
,
Suarez
,
E. E.
,
McCormick
,
R. C.
,
Hiesinger
,
W.
,
Cohen
,
J. E.
,
Smith
,
M. J.
,
Patel
,
A. B.
,
Feng
,
W.
, and
Woo
,
Y. J.
,
2008
, “
Transmyocardial Revascularization to Enhance Myocardial Vasculogenesis and Hemodynamic Function
,”
J. Thorac. Cardiovasc. Surg.
,
135
(
2
), pp.
283
291
.
2.
Sharma
,
A.
,
Agrawal
,
S.
,
Goel
,
S.
, and
Borer
,
J. S.
,
2017
, “
Surgical Treatment of Ischemic Mitral Regurgitation: Valve Repair Versus Replacement
,”
Curr. Cardiol. Rep.
,
19
, p.
3
.
3.
Gillinov
,
A. M.
,
Wierup
,
P. N.
,
Blackstone
,
E. H.
,
Bishay
,
E. S.
,
Cosgrove
,
D. M.
,
White
,
J.
,
Lytle
,
B. W.
, and
McCarthy
,
P. M.
,
2001
, “
Is Repair Preferable to Replacement for Ischemic Mitral Regurgitation?
,”
J. Thorac. Cardiovasc. Surg.
,
122
(
6
), pp.
1125
1141
.
4.
Ryan
,
L. P.
,
Salgo
,
I. S.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2006
, “
The Emerging Role of Three-Dimensional Echocardiography in Mitral Valve Repair
,”
Semin. Thorac. Cardiovasc. Surg.
,
18
(
2
), pp.
126
134
.
5.
Acker
,
M. A.
,
Parides
,
M. K.
,
Perrault
,
L. P.
,
Moskowitz
,
A. J.
,
Gelijns
,
A. C.
,
Voisine
,
P.
,
Smith
,
P. K.
,
Hung
,
J. W.
,
Blackstone
,
E. H.
,
Puskas
,
J. D.
,
Argenziano
,
M.
,
Gammie
,
J. S.
,
Mack
,
M.
,
Ascheim
,
D. D.
,
Bagiella
,
E.
,
Moquete
,
E. G.
,
Ferguson
,
T. B.
,
Horvath
,
K. A.
,
Geller
,
N. L.
,
Miller
,
M. A.
,
Woo
,
Y. J.
,
D'Alessandro
,
D. A.
,
Ailawadi
,
G.
,
Dagenais
,
F.
,
Gardner
,
T. J.
,
O'Gara
,
P. T.
,
Michler
,
R. E.
, and
Kron
,
I. L.
,
2014
, “
Mitral-Valve Repair Versus Replacement for Severe Ischemic Mitral Regurgitation
,”
New Engl. J. Med.
,
370
(
1
), pp.
23
32
.
6.
Kuwahara
,
M.
, and
Eiho
,
S.
,
1991
, “
3-D Heart Image Reconstruction From MRI Data
,”
Comput. Med. Imaging Graph.
,
15
(
4
), pp.
241
246
.
7.
Jassar
,
A. S.
,
Vergnat
,
M.
,
Jackson
,
B. M.
,
McGarvey
,
J. R.
,
Cheung
,
A. T.
,
Ferrari
,
G.
,
Woo
,
Y. J.
,
Acker
,
M. A.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
,
2014
, “
Regional Annular Geometry in Patients With Mitral Regurgitation: Implications for Annuloplasty Ring Selection
,”
Ann. Thorac. Surg.
,
97
(
1
), pp.
64
70
.
8.
Bouma
,
W.
,
Lai
,
E. K.
,
Levack
,
M. M.
,
Shang
,
E. K.
,
Pouch
,
A. M.
,
Eperjesi
,
T. J.
,
Plappert
,
T. J.
,
Yushkevich
,
P. A.
,
Mariani
,
M. A.
,
Khabbaz
,
K. R.
,
Gleason
,
T. G.
,
Mahmood
,
F.
,
Acker
,
M. A.
,
Woo
,
Y. J.
,
Cheung
,
A. T.
,
Jackson
,
B. M.
,
Gorman
,
J. H.
, III
, and
Gorman
,
R. C.
,
2016
, “
Preoperative Three-Dimensional Valve Analysis Predicts Recurrent Ischemic Mitral Regurgitation After Mitral Annuloplasty
,”
Ann. Thorac. Surg.
,
101
(
2
), pp.
567
575
.
9.
Soares
,
J. S.
,
Feaver
,
K. R.
,
Zhang
,
W.
,
Kamensky
,
D.
,
Aggarwal
,
A.
, and
Sacks
,
M. S.
,
2016
, “
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance
,”
Cardiovasc. Eng. Technol.
,
7
(
4
), pp.
309
351
.
10.
Chandran
,
K. B.
,
2010
, “
Role of Computational Simulations in Heart Valve Dynamics and Design of Valvular Prostheses
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
18
38
.
11.
Kheradvar
,
A.
,
Groves
,
E. M.
,
Simmons
,
C. A.
,
Griffith
,
B.
,
Alavi
,
S. H.
,
Tranquillo
,
R.
,
Dasi
,
L. P.
,
Falahatpisheh
,
A.
,
Grande-Allen
,
K. J.
,
Goergen
,
C. J.
,
Mofrad
,
M. R.
,
Baaijens
,
F.
,
Canic
,
S.
, and
Little
,
S. H.
,
2015
, “
Emerging Trends in Heart Valve Engineering—Part III: Novel Technologies for Mitral Valve Repair and Replacement
,”
Ann. Biomed. Eng.
,
43
(
4
), pp.
858
870
.
12.
Baillargeon
,
B.
,
Rebelo
,
N.
,
Fox
,
D. D.
,
Taylor
,
R. L.
, and
Kuhl
,
E.
,
2014
, “
The Living Heart Project: A Robust and Integrative Simulator for Human Heart Function
,”
Eur. J. Mech. A
,
48
, pp.
38
47
.
13.
Votta
,
E.
,
Caiani
,
E.
,
Veronesi
,
F.
,
Soncini
,
M.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2008
, “
Mitral Valve Finite-Element Modelling From Ultrasound Data: A Pilot Study for a New Approach to Understand Mitral Function and Clinical Scenarios
,”
Philos. Trans. R. Soc., A
,
366
(
1879
), pp.
3411
3434
.
14.
Rego
,
B. V.
,
Ayoub
,
S.
,
Khalighi
,
A. H.
,
Drach
,
A.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2017
, “
Alterations in Mechanical Properties and In Vivo Geometry of the Mitral Valve Following Myocardial Infarction
,”
Summer Biomechanics, Bioengineering and Biotransport Conference
, Tucson, AZ, June 21–24, p.
SB3C2017-1
.https://www.researchgate.net/publication/319362747_Alterations_in_mechanical_properties_and_in_vivo_geometry_of_the_mitral_valve_following_myocardial_infarction
15.
Dal-Bianco
,
J. P.
,
Aikawa
,
E.
,
Bischoff
,
J.
,
Guerrero
,
J. L.
,
Handschumacher
,
M. D.
,
Sullivan
,
S.
,
Johnson
,
B.
,
Titus
,
J. S.
,
Iwamoto
,
Y.
,
Wylie-Sears
,
J.
,
Levine
,
R. A.
, and
Carpentier
,
A.
,
2009
, “
Active Adaptation of the Tethered Mitral Valve: Insights Into a Compensatory Mechanism for Functional Mitral Regurgitation
,”
Circulation
,
120
(
4
), pp.
334
342
.
16.
Merryman
,
W. D.
,
Youn
,
I.
,
Lukoff
,
H. D.
,
Krueger
,
P. M.
,
Guilak
,
F.
,
Hopkins
,
R. A.
, and
Sacks
,
M. S.
,
2006
, “
Correlation Between Heart Valve Interstitial Cell Stiffness and Transvalvular Pressure: Implications for Collagen Biosynthesis
,”
Am. J. Physiol. Heart Circ. Physiol.
,
290
(
1
), pp.
H224
H231
.
17.
Khang
,
A.
,
Buchanan
,
R. M.
,
Ayoub
,
S.
,
Rego
,
B. V.
,
Lee
,
C.-H.
,
Ferrari
,
G.
,
Anseth
,
K. S.
, and
Sacks
,
M. S.
,
2018
, “
Mechanobiology of the Heart Valve Interstitial Cell: Simulation, Experiment, and Discovery
,”
Mechanobiology in Health and Disease
,
Elsevier
,
Cambridge, MA
, pp.
249
283
.
18.
Sacks
,
M. S.
,
Merryman
,
W. D.
, and
Schmidt
,
D. E.
,
2009
, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
(
12
), pp.
1804
1824
.
19.
Sacks
,
M. S.
,
Khalighi
,
A.
,
Rego
,
B.
,
Ayoub
,
S.
, and
Drach
,
A.
,
2017
, “
On the Need for Multi-Scale Geometric Modelling of the Mitral Heart Valve
,”
Healthcare Technol. Lett.
,
4
(
5
), p.
150
.
20.
Lee
,
C. H.
,
Rabbah
,
J. P.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Sacks
,
M. S.
,
2015
, “
On the Effects of Leaflet Microstructure and Constitutive Model on the Closing Behavior of the Mitral Valve
,”
Biomech. Model. Mechanobiol.
,
14
(
6
), pp.
1281
1302
.
21.
Bloodworth
,
C. H.
,
Pierce
,
E. L.
,
Easley
,
T. F.
,
Drach
,
A.
,
Khalighi
,
A. H.
,
Toma
,
M.
,
Jensen
,
M. O.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2017
, “
Ex Vivo Methods for Informing Computational Models of the Mitral Valve
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
496
507
.
22.
Khalighi
,
A. H.
,
Drach
,
A.
,
ter Huurne
,
F. M.
,
Lee
,
C.-H.
,
Bloodworth
,
C.
,
Pierce
,
E. L.
,
Jensen
,
M. O.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
,
2015
, “
A Comprehensive Framework for the Characterization of the Complete Mitral Valve Geometry for the Development of a Population-Averaged Model
,”
Functional Imaging and Modeling of the Heart
,
Springer
,
New York
, pp.
164
171
.
23.
Khalighi
,
A. H.
,
Drach
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
, “
Multi-Resolution Geometric Modeling of the Mitral Heart Valve Leaflets
,”
Biomech. Model. Mechanobiol.
,
17
(
2
), pp.
351
366
.
24.
Drach
,
A.
,
Khalighi
,
A. H.
, and
Sacks
,
M. S.
, “
A Comprehensive Pipeline for Multi-Resolution Modeling of the Mitral Valve: Validation, Computational Efficiency, and Predictive Capability
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(2), p.
e2921
.
25.
Khalighi
,
A. H.
,
Drach
,
A.
,
Bloodworth
,
C. H.
,
Pierce
,
E. L.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2017
, “
Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization
,”
Ann. Biomed. Eng.
,
45
(
2
), pp.
378
393
.
26.
Rego
,
B. V.
,
Khalighi
,
A. H.
,
Drach
,
A.
,
Lai
,
E. K.
,
Pouch
,
A. M.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2018
, “
A Noninvasive Method for the Determination of In Vivo Mitral Valve Leaflet Strains
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
12
), p.
e3142
.
27.
Alfieri
,
O.
, and
Maisano
,
F.
,
2010
, “
An Effective Technique to Correct Anterior Mitral Leaflet Prolapse
,”
J. Card. Surg.
,
14
(
6
), pp.
468
470
.
28.
Skallerud
,
B.
,
Prot
,
V.
, and
Nordrum
,
I. S.
,
2011
, “
Modeling Active Muscle Contraction in Mitral Valve Leaflets During Systole: A First Approach
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
11
26
.
29.
Stevanella
,
M.
,
Maffessanti
,
F.
,
Conti
,
C. A.
,
Votta
,
E.
,
Arnoldi
,
A.
,
Lombardi
,
M.
,
Parodi
,
O.
,
Caiani
,
E. G.
, and
Redaelli
,
A.
,
2011
, “
Mitral Valve Patient-Specific Finite Element Modeling From Cardiac MRI: Application to an Annuloplasty Procedure
,”
Cardiovasc. Eng. Technol.
,
2
(
2
), pp.
66
76
.
30.
Stevanella
,
M.
,
Votta
,
E.
, and
Redaelli
,
A.
,
2009
, “
Mitral Valve Finite Element Modeling: Implications of Tissues' Nonlinear Response and Annular Motion
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
121010
.
31.
Wang
,
Q.
, and
Sun
,
W.
,
2013
, “
Finite Element Modeling of Mitral Valve Dynamic Deformation Using Patient-Specific Multi-Slices Computed Tomography Scans
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
142
153
.
32.
Pouch
,
A. M.
,
Jackson
,
B. M.
,
Yushkevich
,
P. A.
,
Gorman
,
J. H.
, III
, and
Gorman
,
R. C.
,
2015
, “
4D-Transesophageal Echocardiography and Emerging Imaging Modalities for Guiding Mitral Valve Repair
,”
Ann. Cardiothorac. Surg.
,
4
(
5
), pp.
461
462
.
33.
Pouch
,
A. M.
,
Yushkevich
,
P. A.
,
Jackson
,
B. M.
,
Jassar
,
A. S.
,
Vergnat
,
M.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sehgal
,
C. M.
,
2012
, “
Development of a Semi-Automated Method for Mitral Valve Modeling With Medial Axis Representation Using 3D Ultrasound
,”
Med. Phys.
,
39
(
2
), pp.
933
950
.
34.
Rabbah
,
J.-P.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2013
, “
A Novel Left Heart Simulator for the Multi-Modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics
,”
Ann. Biomed. Eng.
,
41
(
2
), pp.
305
315
.
35.
Jaklic
,
A.
, and
Solina
,
F.
,
2003
, “
Moments of Superellipsoids and Their Application to Range Image Registration
,”
IEEE Trans. Syst., Man, and Cybernetics, Part B (Cybernetics)
,
33
(4), pp.
648
657
.
36.
Barr
,
A. H.
,
1981
, “
Superquadrics and Angle-Preserving Transformations
,”
IEEE Comput. Graphics Appl.
,
1
(
1
), pp.
11
23
.
37.
Zhang
,
W.
,
Ayoub
,
S.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2016
, “
A Meso-Scale Layer-Specific Structural Constitutive Model of the Mitral Heart Valve Leaflets
,”
Acta Biomater.
,
32
, pp.
238
255
.
38.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
39.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
40.
Lee
,
C. H.
,
Zhang
,
W.
,
Liao
,
J.
,
Carruthers
,
C. A.
,
Sacks
,
J. I.
, and
Sacks
,
M. S.
,
2015
, “
On the Presence of Affine Fibril and Fiber Kinematics in the Mitral Valve Anterior Leaflet
,”
Biophys. J.
,
108
(
8
), pp.
2074
2087
.
41.
Buchanan
,
R. M.
, and
Sacks
,
M. S.
, “
Interlayer Micromechanics of the Aortic Heart Valve Leaflet
,”
Biomech. Model. Mechanobiol.
, 13(4), pp.
813
826
.
42.
Rego
,
B. V.
, and
Sacks
,
M. S.
,
2015
, “
True 3D Stresses in Heart Valve Leaflets
,”
Summer Biomechanics, Bioengineering and Biotransport Conference
, Snowbird, UT, June 17–20, p. SB3C2015-1032.https://www.researchgate.net/publication/319391973_True_3D_stresses_in_heart_valve_leaflets
43.
Rego
,
B. V.
, and
Sacks
,
M. S.
,
2017
, “
A Functionally Graded Material Model for the Transmural Stress Distribution of the Aortic Valve Leaflet
,”
J. Biomech.
,
54
, pp.
88
95
.
44.
Lee
,
C.-H.
,
Carruthers
,
C. A.
,
Ayoub
,
S.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Sacks
,
M. S.
,
2015
, “
Quantification and Simulation of Layer-Specific Mitral Valve Interstitial Cells Deformation Under Physiological Loading
,”
J. Theor. Biol.
,
373
, pp.
26
39
.
45.
Lee
,
C. H.
,
Amini
,
R.
,
Sakamoto
,
Y.
,
Carruthers
,
C. A.
,
Ankush
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Sacks
,
M. S.
,
2015
, “
Mitral Valves: A Computational Framework
,”
Multiscale Modeling in Biomechanics and Mechanobiology
,
D.
Suvranu
,
E.
Kuhl
, and
W.
Hwang
, eds.,
Springer-Verlag
,
London
, pp. 223–255.
46.
Fan
,
R.
, and
Sacks
,
M. S.
,
2014
, “
Simulation of Planar Soft Tissues Using a Structural Constitutive Model: Finite Element Implementation and Validation
,”
J. Biomech.
,
47
(
9
), pp.
2043
2054
.
47.
Pouch
,
A. M.
,
Jackson
,
B. M.
,
Lai
,
E.
,
Takebe
,
M.
,
Tian
,
S.
,
Cheung
,
A. T.
,
Woo
,
Y. J.
,
Patel
,
P. A.
,
Wang
,
H.
,
Yushkevich
,
P. A.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2016
, “
Modeling the Myxomatous Mitral Valve With Three-Dimensional Echocardiography
,”
Ann. Thorac. Surg.
,
102
(
3
), pp.
703
710
.
48.
Witschey
,
W. R.
,
Pouch
,
A. M.
,
McGarvey
,
J. R.
,
Ikeuchi
,
K.
,
Contijoch
,
F.
,
Levack
,
M. M.
,
Yushkevick
,
P. A.
,
Sehgal
,
C. M.
,
Jackson
,
B. M.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2014
, “
Three-Dimensional Ultrasound-Derived Physical Mitral Valve Modeling
,”
Ann. Thorac. Surg.
,
98
(
2
), pp.
691
694
.
49.
Rego
,
B. V.
,
Wells
,
S. M.
,
Lee
,
C.-H.
, and
Sacks
,
M. S.
,
2016
, “
Mitral Valve Leaflet Remodelling During Pregnancy: Insights Into Cell-Mediated Recovery of Tissue Homeostasis
,”
J. R. Soc., Interface
,
13
(
125
), p. 20160709.
50.
Ayoub
,
S.
,
Lee
,
C.-H.
,
Driesbaugh
,
K. H.
,
Anselmo
,
W.
,
Hughes
,
C. T.
,
Ferrari
,
G.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2017
, “
Regulation of Valve Interstitial Cell Homeostasis by Mechanical Deformation: Implications for Heart Valve Disease and Surgical Repair
,”
J. R. Soc. Interface
,
14
(135), p. 20170580.
51.
Sacks
,
M. S.
,
Enomoto
,
Y.
,
Graybill
,
J. R.
,
Merryman
,
W. D.
,
Zeeshan
,
A.
,
Yoganathan
,
A. P.
,
Levy
,
R. J.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, III
,
2006
, “
In-Vivo Dynamic Deformation of the Mitral Valve Anterior Leaflet
,”
Ann. Thorac. Surg.
,
82
(
4
), pp.
1369
1377
.
52.
Chan
,
V.
,
Castillo
,
J. G.
,
Adams
,
D. H.
,
2013
, “
Mitral Valve Repair for Ischemic Mitral Regurgitation
,” Mastery of Cardiothoracic Surgery, Lippincott Williams & Wilkins, Philadelphia, PA, pp.
431
439
.
53.
Ben Zekry
,
S.
,
Freeman
,
J.
,
Jajoo
,
A.
,
He
,
J.
,
Little
,
S. H.
,
Lawrie
,
G. M.
,
Azencott
,
R.
, and
Zoghbi
,
W. A.
,
2016
, “
Patient-Specific Quantitation of Mitral Valve Strain by Computer Analysis of Three-Dimensional Echocardiography: A Pilot Study
,”
Circ. Cardiovasc. Imaging
,
9
(1), p. e003254.
54.
Ben Zekry
,
S.
,
Freeman
,
J.
,
Jajoo
,
A.
,
He
,
J.
,
Little
,
S. H.
,
Lawrie
,
G. M.
,
Azencott
,
R.
, and
Zoghbi
,
W. A.
,
2018
, “
Effect of Mitral Valve Repair on Mitral valve Leaflets Strain: A Pilot Study
,”
JACC Cardiovasc. Imaging
,
11
(
5
), pp.
776
777
.
55.
Khalighi
,
A. H.
,
Rego
,
B. V.
,
Drach
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2019
, “
Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization
,”
Ann. Biomed. Eng.
,
47
(1), pp.
60
74
.
56.
Wijdh-den Hamer
,
I. J.
,
Bouma
,
W.
,
Lai
,
E. K.
,
Levack
,
M. M.
,
Shang
,
E. K.
,
Pouch
,
A. M.
,
Eperjesi
,
T. J.
,
Plappert
,
T. J.
,
Yushkevich
,
P. A.
,
Hung
,
J.
,
Mariani
,
M. A.
,
Khabbaz
,
K. R.
,
Gleason
,
T. G.
,
Mahmood
,
F.
,
Acker
,
M. A.
,
Woo
,
Y. J.
,
Cheung
,
A. T.
,
Gillespie
,
M. J.
,
Jackson
,
B. M.
,
Gorman
,
J. H.
, III
, and
Gorman
,
R. C.
,
2016
, “
The Value of Preoperative 3-Dimensional Over 2-Dimensional Valve Analysis in Predicting Recurrent Ischemic Mitral Regurgitation After Mitral Annuloplasty
,”
J. Thorac. Cardiovasc. Surg.
,
152
(
3
), pp.
847
859
.
You do not currently have access to this content.