Walking can be exceedingly complex to analyze due to highly nonlinear multibody dynamics, nonlinear relationships between muscle excitations and resulting muscle forces, dynamic coupling that allows muscles to accelerate joints and segments they do not span, and redundant muscle control. Walking requires the successful execution of a number of biomechanical functions such as providing body support, forward propulsion, and balance control, with specific muscle groups contributing to their execution. Thus, muscle injury or neurological impairment that affects muscle output can alter the successful execution of these functions and impair walking performance. The loss of balance control in particular can result in falls and subsequent injuries that lead to the loss of mobility and functional independence. Thus, it is important to assess the mechanisms used to control balance in clinical populations using reliable methods with the ultimate goal of improving rehabilitation outcomes. In this review, we highlight common clinical and laboratory-based measures used to assess balance control and their potential limitations, show how these measures have been used to analyze balance in several clinical populations, and consider the translation of specific laboratory-based measures from the research laboratory to the clinic.

References

References
1.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking—Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.
2.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2003
, “
Biomechanics and Muscle Coordination of Human Walking—Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait Posture
,
17
(
1
), pp.
1
17
.
3.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2003
, “
Individual Muscle Contributions to Support in Normal Walking
,”
Gait Posture
,
17
(
2
), pp.
159
169
.
4.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
,
2006
, “
Muscles That Support the Body Also Modulate Forward Progression During Walking
,”
J. Biomech.
,
39
(
14
), pp.
2623
2630
.
5.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.
6.
Neptune
,
R. R.
, and
McGowan
,
C. P.
,
2011
, “
Muscle Contributions to Whole-Body Sagittal Plane Angular Momentum During Walking
,”
J. Biomech.
,
44
(
1
), pp.
6
12
.
7.
Neptune
,
R. R.
, and
McGowan
,
C. P.
,
2016
, “
Muscle Contributions to Frontal Plane Angular Momentum During Walking
,”
J. Biomech.
,
49
(
13
), pp.
2975
2981
.
8.
Pandy
,
M. G.
,
Lin
,
Y. C.
, and
Kim
,
H. J.
,
2010
, “
Muscle Coordination of Mediolateral Balance in Normal Walking
,”
J. Biomech.
,
43
(
11
), pp.
2055
2064
.
9.
Tinetti
,
M. E.
,
1986
, “
Performance-Oriented Assessment of Mobility Problems in Elderly Patients
,”
J. Am. Geriatr. Soc.
,
34
(
2
), pp.
119
126
.
10.
Soyuer
,
F.
, and
Ozturk
,
A.
,
2007
, “
The Effect of Spasticity, Sense and Walking Aids in Falls of People After Chronic Stroke
,”
Disabil. Rehabil.
,
29
(
9
), pp.
679
687
.
11.
Kegelmeyer
,
D. A.
,
Kloos
,
A. D.
,
Thomas
,
K. M.
, and
Kostyk
,
S. K.
,
2007
, “
Reliability and Validity of the Tinetti Mobility Test for Individuals With Parkinson Disease
,”
Phys. Ther.
,
87
(
10
), pp.
1369
1378
.
12.
Behrman
,
A. L.
,
Light
,
K. E.
, and
Miller
,
G. M.
,
2002
, “
Sensitivity of the Tinetti Gait Assessment for Detecting Change in Individuals With Parkinson's Disease
,”
Clin. Rehabil.
,
16
(
4
), pp.
399
405
.
13.
Berg
,
K. O.
,
Wood-Dauphinee
,
S. L.
,
Williams
,
J. I.
, and
Maki
,
B.
,
1992
, “
Measuring Balance in the Elderly: Validation of an Instrument
,”
Can. J. Public Health
,
83
(
Suppl. 2
), pp.
S7
S11
.https://www.ncbi.nlm.nih.gov/pubmed/1468055
14.
Korner-Bitensky
,
N.
,
Wood-Dauphinee
,
S.
,
Teasell
,
R.
,
Desroisers
,
J.
,
Malouin
,
F.
,
Thomas
,
A.
,
Harrison
,
M.
,
Hanley
,
J.
,
Kaizer
,
F.
,
Kehayia
,
E.
,
Menon-Nair
,
A.
,
Rochette
,
A.
, and
Dumoulin
,
C.
,
2006
, “
Best Versus Actual Practices in Stroke Rehabilitation: Results of the Canadian National Survey
,”
Stroke
,
37
(2), p.
631
.
15.
Tilson
,
J. K.
,
Wu
,
S. S.
,
Cen
,
S. Y.
,
Feng
,
Q.
,
Rose
,
D. R.
,
Behrman
,
A. L.
,
Azen
,
S. P.
, and
Duncan
,
P. W.
,
2012
, “
Characterizing and Identifying Risk for Falls in the LEAPS Study: A Randomized Clinical Trial of Interventions to Improve Walking Poststroke
,”
Stroke
,
43
(
2
), pp.
446
452
.
16.
Blum
,
L.
, and
Korner-Bitensky
,
N.
,
2008
, “
Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review
,”
Phys. Ther.
,
88
(
5
), pp.
559
566
.
17.
Major
,
M. J.
,
Fatone
,
S.
, and
Roth
,
E. J.
,
2013
, “
Validity and Reliability of the Berg Balance Scale for Community-Dwelling Persons With Lower-Limb Amputation
,”
Arch. Phys. Med. Rehabil.
,
94
(
11
), pp.
2194
2202
.
18.
Shumway-Cook
,
A.
, and
Woollacott
,
M.
,
1995
,
Motor Control: Theory and Practical Applications
,
Williams & Wilkins
,
Baltimore, MD
, pp.
323
324
.
19.
Shumway-Cook
,
A.
,
Baldwin
,
M.
,
Polissar
,
N. L.
, and
Gruber
,
W.
,
1997
, “
Predicting the Probability for Falls in Community-Dwelling Older Adults
,”
Phys. Ther.
,
77
(
8
), pp.
812
819
.
20.
Wrisley
,
D. M.
, and
Kumar
,
N. A.
,
2010
, “
Functional Gait Assessment: Concurrent, Discriminative, and Predictive Validity in Community-Dwelling Older Adults
,”
Phys. Ther.
,
90
(
5
), pp.
761
773
.
21.
Whitney
,
S. L.
,
Hudak
,
M. T.
, and
Marchetti
,
G. F.
,
2000
, “
The Dynamic Gait Index Relates to Self-Reported Fall History in Individuals With Vestibular Dysfunction
,”
J. Vestib. Res.
,
10
(
2
), pp.
99
105
.https://content.iospress.com/articles/journal-of-vestibular-research/ves00059
22.
Fritz
,
S. L.
,
Pittman
,
A. L.
,
Robinson
,
A. C.
,
Orton
,
S. C.
, and
Rivers
,
E. D.
,
2007
, “
An Intense Intervention for Improving Gait, Balance, and Mobility for Individuals With Chronic Stroke: A Pilot Study
,”
J. Neurol. Phys. Ther.
,
31
(
2
), pp.
71
76
.
23.
Dibble
,
L. E.
, and
Lange
,
M.
,
2006
, “
Predicting Falls in Individuals With Parkinson Disease: A Reconsideration of Clinical Balance Measures
,”
J. Neurol. Phys. Ther.
,
30
(
2
), pp.
60
67
.
24.
Cattaneo
,
D.
,
Regola
,
A.
, and
Meotti
,
M.
,
2006
, “
Validity of Six Balance Disorders Scales in Persons With Multiple Sclerosis
,”
Disabil. Rehabil.
,
28
(
12
), pp.
789
795
.
25.
Lin
,
J. H.
,
Hsu
,
M. J.
,
Hsu
,
H. W.
,
Wu
,
H. C.
, and
Hsieh
,
C. L.
,
2010
, “
Psychometric Comparisons of 3 Functional Ambulation Measures for Patients With Stroke
,”
Stroke
,
41
(
9
), pp.
2021
2025
.
26.
Pardasaney
,
P. K.
,
Latham
,
N. K.
,
Jette
,
A. M.
,
Wagenaar
,
R. C.
,
Ni
,
P.
,
Slavin
,
M. D.
, and
Bean
,
J. F.
,
2012
, “
Sensitivity to Change and Responsiveness of Four Balance Measures for Community-Dwelling Older Adults
,”
Phys. Ther.
,
92
(
3
), pp.
388
397
.
27.
Wrisley
,
D. M.
,
Marchetti
,
G. F.
,
Kuharsky
,
D. K.
, and
Whitney
,
S. L.
,
2004
, “
Reliability, Internal Consistency, and Validity of Data Obtained With the Functional Gait Assessment
,”
Phys. Ther.
,
84
(
10
), pp.
906
918
.https://www.ncbi.nlm.nih.gov/pubmed/15449976
28.
Howe
,
J. A.
,
Inness
,
E. L.
,
Venturini
,
A.
,
Williams
,
J. I.
, and
Verrier
,
M. C.
,
2006
, “
The Community Balance and Mobility Scale—A Balance Measure for Individuals With Traumatic Brain Injury
,”
Clin. Rehabil.
,
20
(
10
), pp.
885
895
.
29.
Knorr
,
S.
,
Brouwer
,
B.
, and
Garland
,
S. J.
,
2010
, “
Validity of the Community Balance and Mobility Scale in Community-Dwelling Persons After Stroke
,”
Arch. Phys. Med. Rehabil.
,
91
(
6
), pp.
890
896
.
30.
Hof
,
A. L.
,
2008
, “
The ‘extrapolated Center of Mass’ Concept Suggests a Simple Control of Balance in Walking
,”
Hum. Mov. Sci.
,
27
(
1
), pp.
112
125
.
31.
McAndrew Young
,
P. M.
,
Wilken
,
J. M.
, and
Dingwell
,
J. B.
,
2012
, “
Dynamic Margins of Stability During Human Walking in Destabilizing Environments
,”
J. Biomech.
,
45
(
6
), pp.
1053
1059
.
32.
Hurt
,
C. P.
, and
Grabiner
,
M. D.
,
2015
, “
Age-Related Differences in the Maintenance of Frontal Plane Dynamic Stability While Stepping to Targets
,”
J. Biomech.
,
48
(
4
), pp.
592
597
.
33.
Bolger
,
D.
,
Ting
,
L. H.
, and
Sawers
,
A.
,
2014
, “
Individuals With Transtibial Limb Loss Use Interlimb Force Asymmetries to Maintain Multi-Directional Reactive Balance Control
,”
Clin. Biomech.
,
29
(
9
), pp.
1039
1047
.
34.
Gates
,
D. H.
,
Scott
,
S. J.
,
Wilken
,
J. M.
, and
Dingwell
,
J. B.
,
2013
, “
Frontal Plane Dynamic Margins of Stability in Individuals With and Without Transtibial Amputation Walking on a Loose Rock Surface
,”
Gait Posture
,
38
(
4
), pp.
570
575
.
35.
Hof
,
A. L.
,
van Bockel
,
R. M.
,
Schoppen
,
T.
, and
Postema
,
K.
,
2007
, “
Control of Lateral Balance in Walking. Experimental Findings in Normal Subjects and Above-Knee Amputees
,”
Gait Posture
,
25
(
2
), pp.
250
258
.
36.
Hak
,
L.
,
Houdijk
,
H.
,
van der Wurff
,
P.
,
Prins
,
M. R.
,
Mert
,
A.
,
Beek
,
P. J.
, and
van Dieen
,
J. H.
,
2013
, “
Stepping Strategies Used by Post-Stroke Individuals to Maintain Margins of Stability During Walking
,”
Clin. Biomech.
,
28
(
9–10
), pp.
1041
1048
.
37.
Kao
,
P. C.
,
Dingwell
,
J. B.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S.
,
2014
, “
Dynamic Instability During Post-Stroke Hemiparetic Walking
,”
Gait Posture
,
40
(
3
), pp.
457
463
.
38.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2011
, “
Differences in Whole-Body Angular Momentum Between Below-Knee Amputees and Non-Amputees Across Walking Speeds
,”
J. Biomech.
,
44
(
3
), pp.
379
385
.
39.
Vistamehr
,
A.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2014
, “
The Influence of Solid Ankle-Foot-Orthoses on Forward Propulsion and Dynamic Balance in Healthy Adults During Walking
,”
Clin. Biomech.
,
29
(5), pp. 583–589.
40.
Yeates
,
K. H.
,
Segal
,
A. D.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2016
, “
Balance and Recovery on Coronally-Uneven and Unpredictable Terrain
,”
J. Biomech.
,
49
(
13
), pp.
2734
2740
.
41.
Silverman
,
A. K.
,
Wilken
,
J. M.
,
Sinitski
,
E. H.
, and
Neptune
,
R. R.
,
2012
, “
Whole-Body Angular Momentum in Incline and Decline Walking
,”
J. Biomech.
,
45
(
6
), pp.
965
971
.
42.
Silverman
,
A. K.
,
Neptune
,
R. R.
,
Sinitski
,
E. H.
, and
Wilken
,
J. M.
,
2014
, “
Whole-Body Angular Momentum During Stair Ascent and Descent
,”
Gait Posture
,
39
(
4
), pp.
1109
1114
.
43.
Nott
,
C. R.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2014
, “
Relationships Between Frontal-Plane Angular Momentum and Clinical Balance Measures During Post-Stroke Hemiparetic Walking
,”
Gait Posture
,
39
(
1
), pp.
129
134
.
44.
Vistamehr
,
A.
,
Balasubramanian
,
C. K.
,
Clark
,
D. J.
,
Neptune
,
R. R.
, and
Fox
,
E. J.
,
2018
, “
Dynamic Balance During Walking Adaptability Tasks in Individuals Post-Stroke
,”
J. Biomech.
,
74
, pp.
106
115
.
45.
Pijnappels
,
M.
,
Bobbert
,
M. F.
, and
van Dieen
,
J. H.
,
2005
, “
Push-Off Reactions in Recovery After Tripping Discriminate Young Subjects, Older Non-Fallers and Older Fallers
,”
Gait Posture
,
21
(
4
), pp.
388
394
.
46.
Pickle
,
N. T.
,
Wilken
,
J. M.
,
Aldridge
,
J. M.
,
Neptune
,
R. R.
, and
Silverman
,
A. K.
,
2014
, “
Whole-Body Angular Momentum During Stair Walking Using Passive and Powered Lower-Limb Prostheses
,”
J. Biomech.
,
47
(
13
), pp.
3380
3389
.
47.
D'Andrea
,
S.
,
Wilhelm
,
N.
,
Silverman
,
A. K.
, and
Grabowski
,
A. M.
,
2014
, “
Does Use of a Powered Ankle-Foot Prosthesis Restore Whole-Body Angular Momentum During Walking at Different Speeds?
,”
Clin. Orthop. Relat. Res.
,
472
(
10
), pp.
3044
3054
.
48.
Sheehan
,
R. C.
,
Beltran
,
E. J.
,
Dingwell
,
J. B.
, and
Wilken
,
J. M.
,
2015
, “
Mediolateral Angular Momentum Changes in Persons With Amputation During Perturbed Walking
,”
Gait Posture
,
41
(
3
), pp.
795
800
.
49.
Martelli
,
D.
,
Monaco
,
V.
,
Bassi Luciani
,
L.
, and
Micera
,
S.
,
2013
, “
Angular Momentum During Unexpected Multidirectional Perturbations Delivered While Walking
,”
IEEE Trans. Biomed. Eng.
,
60
(
7
), pp.
1785
1795
.
50.
Bruijn
,
S. M.
,
Meyns
,
P.
,
Jonkers
,
I.
,
Kaat
,
D.
, and
Duysens
,
J.
,
2011
, “
Control of Angular Momentum During Walking in Children With Cerebral Palsy
,”
Res. Dev. Disabil.
,
32
(
6
), pp.
2860
2866
.
51.
Herr
,
H.
, and
Popovic
,
M.
,
2008
, “
Angular Momentum in Human Walking
,”
J. Exp. Biol.
,
211
(
Pt. 4
), pp.
467
481
.
52.
Vistamehr
,
A.
,
Kautz
,
S. A.
,
Bowden
,
M. G.
, and
Neptune
,
R. R.
,
2016
, “
Correlations Between Measures of Dynamic Balance in Individuals With Post-Stroke Hemiparesis
,”
J. Biomech.
,
49
(
3
), pp.
396
400
.
53.
Jansen
,
K.
,
De Groote
,
F.
,
Duysens
,
J.
, and
Jonkers
,
I.
,
2014
, “
How Gravity and Muscle Action Control Mediolateral Center of Mass Excursion During Slow Walking: A Simulation Study
,”
Gait Posture
,
39
(
1
), pp.
91
97
.
54.
John
,
C. T.
,
Anderson
,
F. C.
,
Higginson
,
J. S.
, and
Delp
,
S. L.
,
2013
, “
Stabilisation of Walking by Intrinsic Muscle Properties Revealed in a Three-Dimensional Muscle-Driven Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
4
), pp.
451
462
.
55.
Klemetti
,
R.
,
Steele
,
K. M.
,
Moilanen
,
P.
,
Avela
,
J.
, and
Timonen
,
J.
,
2014
, “
Contributions of Individual Muscles to the Sagittal- and Frontal-Plane Angular Accelerations of the Trunk in Walking
,”
J. Biomech.
,
47
(
10
), pp.
2263
2268
.
56.
Runge
,
C. F.
,
Shupert
,
C. L.
,
Horak
,
F. B.
, and
Zajac
,
F. E.
,
1999
, “
Ankle and Hip Postural Strategies Defined by Joint Torques
,”
Gait Posture
,
10
(
2
), pp.
161
170
.
57.
LaRoche
,
D. P.
,
Cremin
,
K. A.
,
Greenleaf
,
B.
, and
Croce
,
R. V.
,
2010
, “
Rapid Torque Development in Older Female Fallers and Nonfallers: A Comparison Across Lower-Extremity Muscles
,”
J. Electromyogr. Kinesiol.
,
20
(
3
), pp.
482
488
.
58.
Bauby
,
C. E.
, and
Kuo
,
A. D.
,
2000
, “
Active Control of Lateral Balance in Human Walking
,”
J. Biomech.
,
33
(
11
), pp.
1433
1440
.
59.
Dean
,
J. C.
,
Alexander
,
N. B.
, and
Kuo
,
A. D.
,
2007
, “
The Effect of Lateral Stabilization on Walking in Young and Old Adults
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1919
1926
.
60.
Donelan
,
J. M.
,
Shipman
,
D. W.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2004
, “
Mechanical and Metabolic Requirements for Active Lateral Stabilization in Human Walking
,”
J. Biomech.
,
37
(
6
), pp.
827
835
.
61.
Gabell
,
A.
, and
Nayak
,
U. S.
,
1984
, “
The Effect of Age on Variability in Gait
,”
J. Gerontol.
,
39
(
6
), pp.
662
666
.
62.
Guimaraes
,
R. M.
, and
Isaacs
,
B.
,
1980
, “
Characteristics of the Gait in Old People Who Fall
,”
Int. Rehabil. Med.
,
2
(
4
), pp.
177
180
.
63.
McAndrew Young
,
P. M.
, and
Dingwell
,
J. B.
,
2012
, “
Voluntarily Changing Step Length or Step Width Affects Dynamic Stability of Human Walking
,”
Gait Posture
,
35
(
3
), pp.
472
477
.
64.
Gehlsen
,
G. M.
, and
Whaley
,
M. H.
,
1990
, “
Falls in the Elderly—Part I: Gait
,”
Arch. Phys. Med. Rehabil.
,
71
(
10
), pp.
735
738
.https://www.ncbi.nlm.nih.gov/pubmed/2403278
65.
Maki
,
B. E.
,
1997
, “
Gait Changes in Older Adults: Predictors of Falls or Indicators of Fear
,”
J. Am. Geriatr. Soc.
,
45
(
3
), pp.
313
320
.
66.
Moe-Nilssen
,
R.
, and
Helbostad
,
J. L.
,
2005
, “
Interstride Trunk Acceleration Variability But Not Step Width Variability Can Differentiate Between Fit and Frail Older Adults
,”
Gait Posture
,
21
(
2
), pp.
164
170
.
67.
Nelson
,
A. J.
,
Certo
,
L. J.
,
Lembo
,
L. S.
,
Lopez
,
D. A.
,
Manfredonia
,
E. F.
,
Vanichpong
,
S. K.
, and
Zwick
,
D.
,
1999
, “
The Functional Ambulation Performance of Elderly Fallers and Non-Fallers Walking at Their Preferred Velocity
,”
Neurorehabilitation
,
13
(
3
), pp.
141
146
.http://psycnet.apa.org/record/2001-09363-001
68.
Su
,
P. F.
,
Gard
,
S. A.
,
Lipschutz
,
R. D.
, and
Kuiken
,
T. A.
,
2007
, “
Gait Characteristics of Persons With Bilateral Transtibial Amputations
,”
J. Rehabil. Res. Dev.
,
44
(
4
), pp.
491
501
.
69.
Miller
,
W. C.
,
Speechley
,
M.
, and
Deathe
,
B.
,
2001
, “
The Prevalence and Risk Factors of Falling and Fear of Falling Among Lower Extremity Amputees
,”
Arch. Phys. Med. Rehabil.
,
82
(
8
), pp.
1031
1037
.
70.
Hak
,
L.
,
Houdijk
,
H.
,
van der Wurff
,
P.
,
Prins
,
M. R.
,
Beek
,
P. J.
, and
van Dieen
,
J. H.
,
2015
, “
Stride Frequency and Length Adjustment in Post-Stroke Individuals: Influence on the Margins of Stability
,”
J. Rehabil. Med.
,
47
(
2
), pp.
126
132
.
71.
Woollacott
,
M. H.
, and
Tang
,
P. F.
,
1997
, “
Balance Control During Walking in the Older Adult: Research and Its Implications
,”
Phys. Ther.
,
77
(
6
), pp.
646
660
.
72.
Forster
,
A.
, and
Young
,
J.
,
1995
, “
Incidence and Consequences of Falls Due to Stroke—A Systematic Inquiry
,”
Brit. Med. J.
,
311
(
6997
), pp.
83
86
.
73.
Hof
,
A. L.
,
Vermerris
,
S. M.
, and
Gjaltema
,
W. A.
,
2010
, “
Balance Responses to Lateral Perturbations in Human Treadmill Walking
,”
J. Exp. Biol.
,
213
(
15
), pp.
2655
2664
.
74.
Stokes
,
H. E.
,
Thompson
,
J. D.
, and
Franz
,
J. R.
,
2017
, “
The Neuromuscular Origins of Kinematic Variability During Perturbed Walking
,”
Sci. Rep.
,
7
(
1
), p.
808
.
75.
Dean
,
J. C.
, and
Kautz
,
S. A.
,
2015
, “
Foot Placement Control and Gait Instability Among People With Stroke
,”
J. Rehabil. Res. Dev.
,
52
(
5
), pp.
577
590
.
76.
Zissimopoulos
,
A.
,
Stine
,
R.
,
Fatone
,
S.
, and
Gard
,
S.
,
2014
, “
Mediolateral Foot Placement Ability During Ambulation in Individuals With Chronic Post-Stroke Hemiplegia
,”
Gait Posture
,
39
(
4
), pp.
1097
1102
.
77.
Reissman
,
M. E.
, and
Dhaher
,
Y. Y.
,
2015
, “
A Functional Tracking Task to Assess Frontal Plane Motor Control in Post Stroke Gait
,”
J. Biomech.
,
48
(
10
), pp.
1782
1788
.
78.
Wall
,
J. C.
,
Devlin
,
J.
,
Khirchof
,
R.
, and
Lackey
,
B.
,
2000
, “
Measurement of Step Widths and Step Lengths: A Comparison of Measurements Made Directly From a Grid With Those Made From a Video Recording
,”
J. Orthop. Sports Phys. Ther.
,
30
(
7
), pp.
410
417
.
79.
Falconer
,
J.
, and
Hayes
,
K. W.
,
1991
, “
A Simple Method to Measure Gait for Use in Arthritis Clinical Research
,”
Arthritis Care Res.
,
4
(
1
), pp.
52
57
.
80.
Hollman
,
J. H.
,
McDade
,
E. M.
, and
Petersen
,
R. C.
,
2011
, “
Normative Spatiotemporal Gait Parameters in Older Adults
,”
Gait Posture
,
34
(
1
), pp.
111
118
.
81.
McGowan
,
C. P.
,
Kram
,
R.
, and
Neptune
,
R. R.
,
2009
, “
Modulation of Leg Muscle Function in Response to Altered Demand for Body Support and Forward Propulsion During Walking
,”
J. Biomech.
,
42
(
7
), pp.
850
856
.
82.
McGowan
,
C. P.
,
Neptune
,
R. R.
, and
Kram
,
R.
,
2008
, “
Independent Effects of Weight and Mass on Plantar Flexor Activity During Walking: Implications for Their Contributions to Body Support and Forward Propulsion
,”
J. Appl. Physiol.
,
105
(
2
), pp.
486
494
.
83.
Harper
,
N. G.
,
2015
, “
Muscle Function and Coordination of Amputee and Non-Amputee Stair Ascent
,”
Ph.D. dissertation
, The University of Texas at Austin, TX.https://repositories.lib.utexas.edu/handle/2152/31547
84.
Chang
,
W. R.
,
Leclercq
,
S.
,
Lockhart
,
T. E.
, and
Haslam
,
R.
,
2016
, “
State of Science: Occupational Slips, Trips and Falls on the Same Level
,”
Ergonomics
,
59
(
7
), pp.
861
883
.
85.
Segal
,
A. D.
, and
Klute
,
G. K.
,
2014
, “
Lower-Limb Amputee Recovery Response to an Imposed Error in Mediolateral Foot Placement
,”
J. Biomech.
,
47
(
12
), pp.
2911
2918
.
86.
Miller
,
S. E.
,
Segal
,
A. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2018
, “
Hip Recovery Strategy Used by Below-Knee Amputees Following Mediolateral Foot Perturbations
,”
J. Biomech.
,
76
, pp.
61
67
.
87.
Ashburn
,
A.
,
Hyndman
,
D.
,
Pickering
,
R.
,
Yardley
,
L.
, and
Harris
,
S.
,
2008
, “
Predicting People With Stroke at Risk of Falls
,”
Age Ageing
,
37
(
3
), pp.
270
276
.
88.
Lord
,
S. E.
,
McPherson
,
K.
,
McNaughton
,
H. K.
,
Rochester
,
L.
, and
Weatherall
,
M.
,
2004
, “
Community Ambulation After Stroke: How Important and Obtainable is it and What Measures Appear Predictive?
,”
Arch. Phys. Med. Rehabil.
,
85
(
2
), pp.
234
239
.
89.
Balasubramanian
,
C. K.
,
Clark
,
D. J.
, and
Fox
,
E. J.
,
2014
, “
Walking Adaptability After a Stroke and Its Assessment in Clinical Settings
,”
Stroke Res. Treat.
,
2014
, p.
591013
.
90.
Vistamehr
,
A.
,
Kautz
,
S. A.
,
Bowden
,
M. G.
, and
Neptune
,
R. R.
,
2018
, “
The Influence of Locomotor Training on Dynamic Balance During Steady-State Walking Post-Stroke
,”
J. Biomech.
(under review).
You do not currently have access to this content.