The aim of this study was to generate a subject-specific musculoskeletal muscle model, based on isometric and isovelocity measurements of the whole lower extremity. A two-step optimization procedure is presented for optimizing the muscle-tendon parameters (MTPs) for isometric and isovelocity joint torque profiles. A significant improvement in the prediction of joint torque profiles for both the solely isometric and a combined isometric and dynamic method of optimization when compared to the standard scaling method of the AnyBody Modeling System (AMS) was observed. Depending on the specific purpose of the model, it may be worth considering whether the isometric-only would be sufficient, or the additional dynamic data are required for the combined approach.

References

References
1.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
2.
Klein Horsman
,
M. D.
,
Koopman
,
H. F. J. M.
,
van der Helm
,
F. C. T.
,
Prosé
,
L. P.
, and
Veeger
,
H. E. J.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.
3.
Holmberg
,
L. J.
, and
Lund
,
A. M.
,
2008
, “
A Musculoskeletal Full-Body Simulation of Cross-Country Skiing
,”
J. Sports Eng. Technol.
,
222
(1), pp.
11
22
.
4.
Wu
,
J. Z.
,
Chiou
,
S. S.
, and
Pan
,
C. S.
,
2009
, “
Analysis of Musculoskeletal Loadings in Lower Limbs During Stilts Walking in Occupational Activity
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1177
1189
.
5.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.
6.
Rasmussen
,
J.
,
Holmberg
,
L. J.
,
Sørensen
,
K.
,
Kwan
,
M. M. S.
,
Andersen
,
M. S.
, and
de Zee
,
M.
,
2012
, “
Performance Optimization by Musculoskeletal Simulation
,”
Mov. Sport Sci.
,
1
(75), pp.
73
83
.
7.
Rasmussen
,
J.
,
Kwan
,
M. M. S.
,
Andersen
,
M. S.
, and
de Zee
,
M.
, 2010, “
Analysis of Segment Energy Transfer Using Musculoskeletal Models in a High Speed Badminton Stroke
,”
Ninth International Symposium on Computer Methods in Biomechanics and Biomedical Engineering
,
Valencia, Spain
,
Feb. 24–27
, pp.
2
10
.
8.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and Dynamics Constants of Muscles
,”
Proc. R. Soc. B
,
126
(843), pp.
136
195
.
9.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
10.
Redl
,
C.
,
Gfoehler
,
M.
, and
Pandy
,
M. G.
,
2007
, “
Sensitivity of Muscle Force Estimates to Variations in Muscle-Tendon Properties
,”
Hum. Mov. Sci.
,
26
(
2
), pp.
306
319
.
11.
Scovil
,
C. Y.
, and
Ronsky
,
J. L.
,
2006
, “
Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters
,”
J. Biomech.
,
39
(
11
), pp.
2055
2063
.
12.
Ward
,
S. R.
,
Smallwood
,
L. H.
, and
Lieber
,
R. L.
, “
Scaling of Human Lower Extremity Muscle Architecture to Skeletal Dimensions
,”
20th ISB Congress—ASB 29th Annual Meeting
,
Cleveland, OH
,
July 31–Aug
. 5, p.
502
.
13.
Heinen
,
F.
,
Lund
,
M. E.
,
Rasmussen
,
J.
, and de
Zee, M.
,
2016
, “
Muscle–Tendon Unit Scaling Methods of Hill-Type Musculoskeletal Models: An Overview
,”
Proc. Inst. Mech. Eng., H
,
230
(10), pp. 976–984.
14.
Winby
,
C. R.
,
Lloyd
,
D. G.
, and
Kirk
,
T. B.
,
2008
, “
Evaluation of Different Analytical Methods for Subject-Specific Scaling of Musculotendon Parameters
,”
J. Biomech.
,
41
(
8
), pp.
1682
1688
.
15.
Van Campen
,
A.
,
Pipeleers
,
G.
,
De Groote
,
F.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2014
, “
A New Method for Estimating Subject-Specific Muscle-Tendon Parameters of the Knee Joint Actuators: A Simulation Study
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
10
), pp.
969
987
.
16.
King
,
M. A.
, and
Yeadon
,
M. R.
,
2002
, “
Determining Subject Specific Torque Parameters for Use in a Torque Driven Simulation Model of Dynamic Jumping
,”
J. Appl. Biomech.
,
18
(
3
), pp.
207
217
.
17.
King
,
M. A.
,
Wilson
,
C.
, and
Yeadon
,
M. R.
,
2006
, “
Evaluation of a Torque-Driven Model of Jumping for Height
,”
J. Appl. Biomech.
,
22
(
4
), pp.
264
274
.
18.
Yeadon
,
M. R.
,
King
,
M. A.
, and
Wilson
,
C.
,
2004
, “
Modelling the Maximum Voluntary Joint Torque/Angular Velocity Relationship in Human Movement
,”
J. Biomech.
,
39
(3), pp.
476
482
.
19.
Lewis
,
M. G. C.
,
King
,
M. A.
,
Yeadon
,
M. R.
, and
Conceição
,
F.
,
2012
, “
Are Joint Torque Models Limited by an Assumption of Monoarticularity?
,”
J. Appl. Biomech.
,
28
(
5
), pp.
520
529
.
20.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2003
, “
Estimation of Musculotendon Properties in the Human Upper Limb
,”
Ann. Biomed. Eng.
,
31
(
2
), pp.
207
220
.
21.
Hasson
,
C. J.
, and
Caldwell
,
G. E.
,
2012
, “
Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles
,”
Ann. Biomed. Eng.
,
40
(
5
), pp.
1088
1101
.
22.
Wu
,
W.
,
Lee
,
P. V. S.
,
Bryant
,
A. L.
,
Galea
,
M.
, and
Ackland
,
D. C.
,
2016
, “
Subject-Specific Musculoskeletal Modeling in the Evaluation of Shoulder Muscle and Joint Function
,”
J. Biomech.
,
49
(
15
), pp.
3626
3634
.
23.
d'Souza
,
S.
,
Brückner
,
B.
,
Rasmussen
,
J.
, and
Schwirtz, A.
,
2011
, “
Development of Age and Gender Based Strength Scaled Equations for Use in Simulation Models
,” First international symposium on Digital Human Modeling, Lyon, France, June 14–16.
24.
Schwartz
,
F. P.
,
Bottaro
,
M.
,
Celes
,
R. S.
,
Brown
,
L. E.
, and
Nascimento
,
F. A.
,
2010
, “
The Influence of Velocity Overshoot Movement Artifact on Isokinetic Knee Extension Tests
,”
J. Sports Sci. Med.
,
9
(1), pp.
140
146
.https://www.jssm.org/hfabst.php?id=jssm-09-140.xml
25.
Carbone
,
V.
,
Fluit
,
R.
,
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Janssen
,
D.
,
Damsgaard
,
M.
,
Vigneron
,
L.
,
Feilkas
,
T.
,
Koopman
,
H. F. J. M.
, and
Verdonschot
,
N.
,
2015
, “
TLEM 2.0—A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity
,”
J. Biomech.
,
48
(
5
), pp.
734
741
.
26.
Daxner
,
T.
,
1997
, “
Simulation Von Beuge-und Streckbewegungen des Menschlichen Knies Mit DADS
,” Ph.D. dissertation, Institut für Mechanik der Technischen Universität Wien, Vienna, Austria.
27.
Otten, E.
, 1985, “
Morphometrics and Force-Length Relations of Skeletal Muscles
,”
International Series on Biomechanics (ISB) Biomechanics IX-A
, Winter et al., eds., Human Kinetics Publishers, Champaign, IL, pp. 27–32.
28.
Gföhler
,
M.
,
Angeli
,
T.
,
Eberharter
,
T.
, and
Lugner, P.
, 1999, “
Dynamic Simulation of Cycling Powered by Lower Extremity Muscles Activated by Functional Electrical Stimulation
,”
12th International Biomechanics Seminar
,
Göteborg, Sweden
,
Sept. 10–11
, pp.
101
122
.
29.
Kaufman
,
K. R.
,
An
,
K.
, and
Chao
,
E. Y.
,
1989
, “
Incorporation of Muscle Architecture Into the Muscle Length-Tension Relationship
,”
J. Biomech.
,
22
(
8–9
), pp.
943
948
.
30.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
31.
de Zee
,
M.
,
Dalstra
,
M.
,
Cattaneo
,
P. M.
,
Rasmussen
,
J.
,
Svensson
,
P.
, and
Melsen
,
B.
,
2007
, “
Validation of a Musculo-Skeletal Model of the Mandible and Its Application to Mandibular Distraction Osteogenesis
,”
J. Biomech.
,
40
(
6
), pp.
1192
1201
.
32.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.
33.
Rasmussen
,
J.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Christensen
,
S. T.
,
Marek
,
C.
, and
Siebertz
,
K.
,
2005
, “
A General Method for Scaling Musculo-Skeletal Models
,”
International Symposium on Computer Simulation in Biomechanics
,
Cleveland, OH
,
July 28–30
.
34.
Van Campen
,
A.
,
De Groote
,
F.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2013
, “
An Extended Dynamometer Setup to Improve the Accuracy of Knee Joint Moment Assessment
,”
IEEE Trans. Biomed. Eng.
,
60
(
5
), pp.
1202
1208
.
35.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2002
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
(
4
), pp.
979
1006
.
36.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
37.
Perez
,
R. E.
,
Jansen
,
P. W.
, and
Martins
,
J.
,
2012
, “
pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization
,”
Struct. Mutltidiscip. Optim.
,
45
(
1
), pp.
101
118
.
38.
Svanberg
,
K.
, 2004, “
Some Modelling Aspects for the Fortran Implementation of MMA
,” Optimization and Systems Theory, Department of Mathematics, KTH, Stockholm, Sweeden, Report.
39.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.
40.
Friederich
,
J. A.
, and
Brand
,
R. A.
,
1990
, “
Muscle Fiber Architecture in the Human Lower Limb
,”
J. Biomech.
,
23
(
1
), pp.
91
95
.
41.
van den Bogert
,
A. J.
,
Gerritsen
,
K. G. M.
, and
Cole
,
G. K.
,
1998
, “
Human Muscle Modelling From a User's Perspective
,”
J. Electromyogr. Kinesiol.
,
8
(
2
), pp.
119
124
.
You do not currently have access to this content.