Coronary artery bypass grafts used to treat coronary artery disease (CAD) often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft (TEVG) composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50, and 20:80) were mechanically characterized. The stress–strain data were used to develop predictive models, which were used as part of an optimization scheme that was implemented to determine the ratios of G:PCL and T:PCL and the thickness of the individual layers within a TEVG that would compliance match a target compliance value. The hypocompliant, isocompliant, and hypercompliant grafts had target compliance values of 0.000256, 0.000568, and 0.000880 mmHg−1, respectively. Experimental validation of the optimization demonstrated that the hypercompliant and isocompliant grafts were not statistically significant from their respective target compliance values (p-value = 0.37 and 0.89, respectively). The experimental compliance values of the hypocompliant graft were statistically significant than their target compliance value (p-value = 0.047). We have successfully demonstrated a design optimization scheme that can be used to fabricate multilayered and biomimetic vascular grafts with targeted geometry and compliance.

References

References
1.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R. D.
,
Ferranti
,
S. D.
,
Floyd
,
J.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
S. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Mackey
,
R. H.
,
Matsushita
,
K.
,
Mozaffarian
,
D.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Thiagarajan
,
R. R.
,
Reeves
,
M. J.
,
Ritchey
,
M.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sasson
,
C.
,
Towfighi
,
A.
,
Tsao
,
C. W.
,
Turner
,
M. B.
,
Virani
,
S. S.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H.
,
Alger
,
H. M.
,
Wong
,
S. S.
, and
Muntner
,
P.
,
2017
, “
Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp. e146–e603.
2.
Ferrari
,
E. R.
, and
von Segesser
,
L. K.
,
2006
, “
Arterial Grafting for Myocardial Revascularization: How Better Is It?
,”
Curr. Opin. Cardiol.
,
21
(
6
), pp.
584
588
.https://www.ncbi.nlm.nih.gov/pubmed/17053408
3.
Goldman
,
S.
,
Zadina
,
K.
,
Moritz
,
T.
,
Ovitt
,
T.
,
Sethi
,
G.
,
Copeland
,
J. G.
,
Thottapurathu
,
L.
,
Krasnicka
,
B.
,
Ellis
,
N.
,
Anderson
,
R. J.
, and
Henderson
,
W.
,
2004
, “
Long-Term Patency of Saphenous Vein and Left Internal Mammary Artery Grafts After Coronary Artery Bypass Surgery: Results From a Department of Veterans Affairs Cooperative Study
,”
J. Am. Coll. Cardiol.
,
44
(
11
), pp.
2149
2156
.
4.
Hess
,
C. N.
,
Lopes
,
R. D.
,
Gibson
,
C. M.
,
Hager
,
R.
,
Wojdyla
,
D. M.
,
Englum
,
B. R.
,
Mack
,
M.
,
Califf
,
R.
,
Kouchoukos
,
N. T.
,
Peterson
,
E. D.
, and
Alexander
,
J. H.
,
2014
, “
Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Insights From PREVENT IV
,”
Circulation
,
130
(
17
), pp, 1445–1451.
5.
Kurobe
,
H.
,
Maxfield
,
M. W.
,
Breuer
,
C. K.
, and
Shinoka
,
T.
,
2012
, “
Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future
,”
Stem Cells Transl. Med.
,
1
(
7
), pp.
566
571
.
6.
Kannan
,
R. Y.
,
Salacinski
,
H. J.
,
Butler
,
P. E.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2005
, “
Current Status of Prosthetic Bypass Grafts: A Review
,”
J. Biomed. Mater. Res., Part B
,
74
(
1
), pp.
570
581
.
7.
Rocco
,
K. A.
,
Maxfield
,
M. W.
,
Best
,
C. A.
,
Dean
,
E. W.
, and
Breuer
,
C. K.
,
2014
, “
In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review
,”
Tissue Eng. Part B
,
20
(
6
), pp.
628
640
.
8.
Roll
,
S.
,
Müller-Nordhorn
,
J.
,
Keil
,
T.
,
Scholz
,
H.
,
Eidt
,
D.
,
Greiner
,
W.
, and
Willich
,
S. N.
,
2008
, “
Dacron® vs. PTFE as Bypass Materials in Peripheral Vascular Surgery—Systematic Review and Meta-Analysis
,”
BMC Surg.
,
8
, p.
22
.
9.
Spadaccio
,
C.
,
Nappi
,
F.
,
Al-Attar
,
N.
,
Sutherland
,
F. W.
,
Acar
,
C.
,
Nenna
,
A.
,
Trombetta
,
M.
,
Chello
,
M.
, and
Rainer
,
A.
,
2016
, “
Old Myths, New Concerns: The Long-Term Effects of Ascending Aorta Replacement With Dacron Grafts. Not All That Glitters Is Gold
,”
J. Cardiovasc. Transl. Res.
,
9
(
4
), pp.
334
342
.
10.
Catto
,
V.
,
Farè
,
S.
,
Freddi
,
G.
, and
Tanzi
,
M. C.
,
2014
, “
Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration
,”
ISRN Vasc. Med.
,
2014
, p.
27
.
11.
Nemeno-Guanzon
,
J. G.
,
Lee
,
S.
,
Berg
,
J. R.
,
Jo
,
Y. H.
,
Yeo
,
J. E.
,
Nam
,
B. M.
,
Koh
,
Y.-G.
, and
Lee
,
J. I.
,
2012
, “
Trends in Tissue Engineering for Blood Vessels
,”
J. Biomed. Biotechnol.
,
2012
, p.
956345
.
12.
Wang
,
X.
,
Lin
,
P.
,
Yao
,
Q.
, and
Chen
,
C.
,
2007
, “
Development of Small-Diameter Vascular Grafts
,”
World J. Surg.
,
31
(
4
), pp.
682
689
.
13.
Wang
,
S.
,
Mo
,
X. M.
,
Jiang
,
B. J.
,
Gao
,
C. J.
,
Wang
,
H. S.
,
Zhuang
,
Y. G.
, and
Qiu
,
L. J.
,
2013
, “
Fabrication of Small-Diameter Vascular Scaffolds by Heparin-Bonded P(LLA-CL) Composite Nanofibers to Improve Graft Patency
,”
Int. J. Nanomed.
,
8
, pp.
2131
2139
.
14.
Hashi
,
C. K.
,
Derugin
,
N.
,
Janairo
,
R. R. R.
,
Lee
,
R.
,
Schultz
,
D.
,
Lotz
,
J.
, and
Li
,
S.
,
2010
, “
Anti-Thrombogenic Modification of Small-Diameter Microfibrous Vascular Grafts
,”
Arterioscler., Thromb., Vasc. Biol.
,
30
(
8
), pp.
1621
1627
.
15.
Guo
,
H.-F.
,
Dai
,
W.-W.
,
Qian
,
D.-H.
,
Qin
,
Z.-X.
,
Lei
,
Y.
,
Hou
,
X.-Y.
, and
Wen
,
C.
,
2017
, “
A Simply Prepared Small-Diameter Artificial Blood Vessel That Promotes In Situ Endothelialization
,”
Acta Biomater.
,
54
, pp.
107
116
.
16.
Williams
,
S. K.
,
Kleinert
,
L. B.
, and
Patula-Steinbrenner
,
V.
,
2011
, “
Accelerated Neovascularization and Endothelialization of Vascular Grafts Promoted by Covalently-Bound Laminin Type 1
,”
J. Biomed. Mater. Res., Part A
,
99
(
1
), pp.
67
73
.
17.
Heath
,
D. E.
,
Kobe
,
C.
,
Jones
,
D.
,
Moldovan
,
N. I.
, and
Cooper
,
S. L.
,
2013
, “
In Vitro Endothelialization of Electrospun Terpolymer Scaffolds: Evaluation of Scaffold Type and Cell Source
,”
Tissue Eng. Part A
,
19
(
1–2
), pp.
79
90
.
18.
Melchiorri
,
A. J.
,
Bracaglia
,
L. G.
,
Kimerer
,
L. K.
,
Hibino
,
N.
, and
Fisher
,
J. P.
,
2016
, “
In Vitro Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor
,”
Tissue Eng. Part C
,
22
(
7
), pp.
663
670
.
19.
Rupnick
,
M. A.
,
Hubbard
,
F. A.
,
Pratt
,
K.
,
Jarrell
,
B. E.
, and
Williams
,
S. K.
,
1989
, “
Endothelialization of Vascular Prosthetic Surfaces After Seeding or Sodding With Human Microvascular Endothelial Cells
,”
J. Vasc. Surg.
,
9
(
6
), pp.
788
795
.
20.
Trubel
,
W.
,
Moritz
,
A.
,
Schima
,
H.
,
Raderer
,
F.
,
Scherer
,
R.
,
Ullrich
,
R.
,
Losert
,
U.
, and
Polterauer
,
P.
,
1994
, “
Compliance and Formation of Distal Anastomotic Intimal Hyperplasia in Dacron Mesh Tube Constricted Veins Used as Arterial Bypass Grafts
,”
ASAIO J.
,
40
(
3
), pp.
M273
M278
.
21.
Trubel
,
W.
,
Schima
,
H.
,
Moritz
,
A.
,
Raderer
,
F.
,
Windisch
,
A.
,
Ullrich
,
R.
,
Windberger
,
U.
,
Losert
,
U.
, and
Polterauer
,
P.
,
1995
, “
Compliance Mismatch and Formation of Distal Anastomotic Intimal Hyperplasia in Externally Stiffened and Lumen-Adapted Venous Grafts
,”
Eur. J. Vasc. Endovascular Surg.
,
10
(
4
), pp.
415
423
.
22.
Ballyk
,
P. D.
,
Walsh
,
C.
,
Butany
,
J.
, and
Ojha
,
M.
,
1997
, “
Compliance Mismatch May Promote Graft-Artery Intimal Hyperplasia by Altering Suture-Line Stresses
,”
J. Biomech.
,
31
(
3
), pp.
229
237
.
23.
Xu
,
J.
, and
Shi
,
G.-P.
,
2014
, “
Vascular Wall Extracellular Matrix Proteins and Vascular Diseases
,”
Biochim. Biophys. Acta
,
1842
(
11
), pp.
2106
2119
.
24.
Aydin
,
S.
,
Aydin
,
S.
,
Eren
,
M. N.
,
Sahin
,
İ.
,
Yilmaz
,
M.
,
Kalayci
,
M.
, and
Gungor
,
O.
,
2013
, “
The Cardiovascular System and the Biochemistry of Grafts Used in Heart Surgery
,”
SpringerPlus
,
2
(
1
), p.
612
.
25.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.
26.
Xing
,
Q.
,
Qian
,
Z.
,
Tahtinen
,
M.
,
Yap
,
A. H.
,
Yates
,
K.
, and
Zhao
,
F.
,
2017
, “
Aligned Nanofibrous Cell-Derived Extracellular Matrix for Anisotropic Vascular Graft Construction
,”
Adv. Healthcare Mater.
,
6
(
10
), (epub).
27.
Kim
,
S. H.
,
Turnbull
,
J.
, and
Guimond
,
S.
,
2011
, “
Extracellular Matrix and Cell Signalling: The Dynamic Cooperation of Integrin, Proteoglycan and Growth Factor Receptor
,”
J. Endocrinol.
,
209
(
2
), pp.
139
151
.
28.
Schultz
,
G. S.
, and
Wysocki
,
A.
,
2009
, “
Interactions Between Extracellular Matrix and Growth Factors in Wound Healing
,”
Wound Repair Regener.
,
17
(
2
), pp.
153
162
.
29.
Ma
,
H.
,
Hu
,
J.
, and
Ma
,
P. X.
,
2010
, “
Polymer Scaffolds for Small-Diameter Vascular Tissue Engineering
,”
Adv. Funct. Mater.
,
20
(
17
), pp.
2833
2841
.
30.
Nieponice
,
A.
,
Soletti
,
L.
,
Guan
,
J.
,
Hong
,
Y.
,
Gharaibeh
,
B.
,
Maul
,
T. M.
,
Huard
,
J.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
,
2010
, “
In Vivo Assessment of a Tissue-Engineered Vascular Graft Combining a Biodegradable Elastomeric Scaffold and Muscle-Derived Stem Cells in a Rat Model
,”
Tissue Eng. Part A
,
16
(
4
), pp.
1215
1223
.
31.
Wang
,
W.
,
Hu
,
J.
,
He
,
C.
,
Nie
,
W.
,
Feng
,
W.
,
Qiu
,
K.
,
Zhou
,
X.
,
Gao
,
Y.
, and
Wang
,
G.
,
2015
, “
Heparinized PLLA/PLCL Nanofibrous Scaffold for Potential Engineering of Small-Diameter Blood Vessel: Tunable Elasticity and Anticoagulation Property
,”
J. Biomed. Mater. Res., Part A
,
103
(
5
), pp.
1784
1797
.
32.
Jing
,
X.
,
Mi
,
H. Y.
,
Salick
,
M. R.
,
Cordie
,
T. M.
,
Peng
,
X. F.
, and
Turng
,
L. S.
,
2015
, “
Electrospinning Thermoplastic Polyurethane/Graphene Oxide Scaffolds for Small Diameter Vascular Graft Applications
,”
Mater. Sci. Eng., C
,
49
, pp.
40
50
.
33.
Tan
,
Z.
,
Wang
,
H.
,
Gao
,
X.
,
Liu
,
T.
, and
Tan
,
Y.
,
2016
, “
Composite Vascular Grafts With High Cell Infiltration by Co-Electrospinning
,”
Mater. Sci. Eng., C
,
67
, pp.
369
377
.
34.
Woods
,
I.
, and
Flanagan
,
T. C.
,
2014
, “
Electrospinning of Biomimetic Scaffolds for Tissue-Engineered Vascular Grafts: Threading The Path
,”
Expert Rev. Cardiovasc. Ther.
,
12
(
7
), pp.
815
832
.
35.
Li
,
Z.
, and
Wang
,
C.
,
2013
, “
Effects of Working Parameters on Electrospinning
,”
One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers
,
Z.
Li
, and
C.
Wang
, eds.,
Springer
,
Berlin
, pp.
15
28
.
36.
Hasan
,
A.
,
Memic
,
A.
,
Annabi
,
N.
,
Hossain
,
M.
,
Paul
,
A.
,
Dokmeci
,
M. R.
,
Dehghani
,
F.
, and
Khademhosseini
,
A.
,
2014
, “
Electrospun Scaffolds for Tissue Engineering of Vascular Grafts
,”
Acta Biomater.
,
10
(
1
), pp.
11
25
.
37.
Yao
,
J.
,
Bastiaansen
,
C.
, and
Peijs
,
T.
,
2014
, “
High Strength and High Modulus Electrospun Nanofibers
,”
Fibers
,
2
(
2
), pp.
158
186
.
38.
Hong
,
Y.
,
Ye
,
S.-H.
,
Nieponice
,
A.
,
Soletti
,
L.
,
Vorp
,
D. A.
, and
Wagner
,
W. R.
,
2009
, “
A Small Diameter, Fibrous Vascular Conduit Generated From a Poly(Ester Urethane)Urea and Phospholipid Polymer Blend
,”
Biomaterials
,
30
(
13
), pp.
2457
2467
.
39.
Awad
,
N. K.
,
Niu
,
H.
,
Ali
,
U.
,
Morsi
,
Y. S.
, and
Lin
,
T.
,
2018
, “
Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review
,”
Membranes
,
8
(
1
), p. E15.
40.
Punnakitikashem
,
P.
,
Truong
,
D.
,
Menon
,
J. U.
,
Nguyen
,
K. T.
, and
Hong
,
Y.
,
2014
, “
Electrospun Biodegradable Elastic Polyurethane Scaffolds With Dipyridamole Release for Small Diameter Vascular Grafts
,”
Acta Biomater.
,
10
(
11
), pp.
4618
4628
.
41.
Jha
,
B. S.
,
Ayres
,
C. E.
,
Bowman
,
J. R.
,
Telemeco
,
T. A.
,
Sell
,
S. A.
,
Bowlin
,
G. L.
, and
Simpson
,
D. G.
,
2011
, “
Electrospun Collagen: A Tissue Engineering Scaffold With Unique Functional Properties in a Wide Variety of Applications
,”
J. Nanomater.
,
2011
, p.
15
.
42.
Matthews
,
J. A.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2002
, “
Electrospinning of Collagen Nanofibers
,”
Biomacromolecules
,
3
(
2
), pp.
232
238
.
43.
Le Corre-Bordes
,
D.
,
Hofman
,
K.
, and
Hall
,
B.
,
2018
, “
Guide to Electrospinning Denatured Whole Chain Collagen From Hoki Fish Using Benign Solvents
,”
Int. J. Biol. Macromol.
,
112
, pp.
1289
1299
.
44.
Buttafoco
,
L.
,
Kolkman
,
N. G.
,
Engbers-Buijtenhuijs
,
P.
,
Poot
,
A. A.
,
Dijkstra
,
P. J.
,
Vermes
,
I.
, and
Feijen
,
J.
,
2006
, “
Electrospinning of Collagen and Elastin for Tissue Engineering Applications
,”
Biomaterials
,
27
(
5
), pp.
724
734
.
45.
Rnjak-Kovacina
,
J.
,
Wise
,
S. G.
,
Li
,
Z.
,
Maitz
,
P. K. M.
,
Young
,
C. J.
,
Wang
,
Y.
, and
Weiss
,
A. S.
,
2012
, “
Electrospun Synthetic Human Elastin:Collagen Composite Scaffolds for Dermal Tissue Engineering
,”
Acta Biomater.
,
8
(
10
), pp.
3714
3722
.
46.
Boland
,
E. D.
,
Matthews
,
J. A.
,
Pawlowski
,
K. J.
,
Simpson
,
D. G.
,
Wnek
,
G. E.
, and
Bowlin
,
G. L.
,
2004
, “
Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering
,”
Front Biosci.
,
9
(
2
), pp.
1422
1432
https://www.researchgate.net/publication/5242291_Electrospinning_collagen_and_elastin_Preliminary_vascular_tissue_engineering.
47.
Boland
,
E. D.
,
Matthews
,
J. A.
,
Pawlowski
,
K. J.
,
Simpson
,
D. G.
,
Wnek
,
G. E.
, and
Bowlin
,
G. L.
,
2004
, “
Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering
,”
Front. Biosci.
,
9
(
1–3
), pp.
1422
1432
.
48.
Zeugolis
,
D. I.
,
Khew
,
S. T.
,
Yew
,
E. S.
,
Ekaputra
,
A. K.
,
Tong
,
Y. W.
,
Yung
,
L. Y.
,
Hutmacher
,
D. W.
,
Sheppard
,
C.
, and
Raghunath
,
M.
,
2008
, “
Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin?
,”
Biomaterials
,
29
(
15
), pp.
2293
2305
.
49.
Tamimi
,
E.
,
Ardila
,
D. C.
,
Haskett
,
D. G.
,
Doetschman
,
T.
,
Slepian
,
M. J.
,
Kellar
,
R. S.
, and
Vande Geest
,
J. P.
,
2015
, “
Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
011001
.
50.
Harrison
,
S.
,
Tamimi
,
E.
,
Uhlorn
,
J.
,
Leach
,
T.
, and
Vande Geest
,
J. P.
,
2016
, “
Computationally Optimizing the Compliance of a Biopolymer Based Tissue Engineered Vascular Graft
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
014505
.
51.
Wise
,
S. G.
,
Yeo
,
G. C.
,
Hiob
,
M. A.
,
Rnjak-Kovacina
,
J.
,
Kaplan
,
D. L.
,
Ng
,
M. K. C.
, and
Weiss
,
A. S.
,
2014
, “
Tropoelastin: A Versatile, Bioactive Assembly Module
,”
Acta Biomater.
,
10
(
4
), pp.
1532
1541
.
52.
Senior
,
R. M.
,
Griffin
,
G. L.
, and
Mecham
,
R. P.
,
1980
, “
Chemotactic Activity of Elastin-Derived Peptides
,”
J. Clin. Invest.
,
66
(
4
), pp.
859
862
.
53.
Wise
,
S. G.
, and
Weiss
,
A. S.
,
2009
, “
Tropoelastin
,”
Int. J. Biochem. Cell Biol.
,
41
(
3
), pp.
494
497
.
54.
Indik
,
Z.
,
Abrams
,
W. R.
,
Kucich
,
U.
,
Gibson
,
C. W.
,
Mecham
,
R. P.
, and
Rosenbloom
,
J.
,
1990
, “
Production of Recombinant Human Tropoelastin: Characterization and Demonstration of Immunologic and Chemotactic Activity
,”
Arch. Biochem. Biophys.
,
280
(
1
), pp.
80
86
.
55.
Machula
,
H.
,
Ensley
,
B.
, and
Kellar
,
R.
,
2014
, “
Electrospun Tropoelastin for Delivery of Therapeutic Adipose-Derived Stem Cells to Full-Thickness Dermal Wounds
,”
Adv. Wound Care
,
3
(
5
), pp.
367
375
.
56.
McKenna
,
K. A.
,
Gregory
,
K. W.
,
Sarao
,
R. C.
,
Maslen
,
C. L.
,
Glanville
,
R. W.
, and
Hinds
,
M. T.
,
2012
, “
Structural and Cellular Characterization of Electrospun Recombinant Human Tropoelastin Biomaterials
,”
J. Biomater. Appl.
,
27
(
2
), pp.
219
230
.
57.
McKenna
,
K. A.
,
Hinds
,
M. T.
,
Sarao
,
R. C.
,
Wu
,
P.-C.
,
Maslen
,
C. L.
,
Glanville
,
R. W.
,
Babcock
,
D.
, and
Gregory
,
K. W.
,
2012
, “
Mechanical Property Characterization of Electrospun Recombinant Human Tropoelastin for Vascular Graft Biomaterials
,”
Acta Biomater.
,
8
(
1
), pp.
225
233
.
58.
Nivison-Smith
,
L.
,
Rnjak
,
J.
, and
Weiss
,
A. S.
,
2010
, “
Synthetic Human Elastin Microfibers: Stable Cross-Linked Tropoelastin and Cell Interactive Constructs for Tissue Engineering Applications
,”
Acta Biomater.
,
6
(
2
), pp.
354
359
.
59.
Sell
,
S. A.
,
Francis
,
M. P.
,
Garg
,
K.
,
McClure
,
M. J.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2008
, “
Cross-Linking Methods of Electrospun Fibrinogen Scaffolds for Tissue Engineering Applications
,”
Biomed. Mater.
,
3
(
4
), p.
045001
.
60.
Luo
,
X.
,
Guo
,
Z.
,
He
,
P.
,
Chen
,
T.
,
Li
,
L.
,
Ding
,
S.
, and
Li
,
H.
,
2018
, “
Study on Structure, Mechanical Property and Cell Cytocompatibility of Electrospun Collagen Nanofibers Crosslinked by Common Agents
,”
Int. J. Biol. Macromol.
,
113
, pp.
476
486
.
61.
Gough
,
J. E.
,
Scotchford
,
C. A.
, and
Downes
,
S.
,
2002
, “
Cytotoxicity of Glutaraldehyde Crosslinked Collagen/Poly(Vinyl Alcohol) Films Is by the Mechanism of Apoptosis
,”
J. Biomed. Mater. Res.
,
61
(
1
), pp.
121
130
.
62.
Kim
,
K. M.
,
Herrera
,
G. A.
, and
Battarbee
,
H. D.
,
1999
, “
Role of Glutaraldehyde in Calcification of Porcine Aortic Valve Fibroblasts
,”
Am. J. Pathol.
,
154
(
3
), pp.
843
852
.
63.
Chanda
,
J.
,
Kondoh
,
K.
,
Ijima
,
K.
,
Matsukawa
,
M.
, and
Kuribayashi
,
R.
,
1998
, “
In Vitro and In Vivo Calcification of Vascular Bioprostheses
,”
Biomaterials
,
19
(
18
), pp.
1651
1656
.
64.
Golomb
,
G.
,
Schoen
,
F. J.
,
Smith
,
M. S.
,
Linden
,
J.
,
Dixon
,
M.
, and
Levy
,
R. J.
,
1987
, “
The Role of Glutaraldehyde-Induced Cross-Links in Calcification of Bovine Pericardium Used in Cardiac Valve Bioprostheses
,”
Am. J. Pathol.
,
127
(
1
), pp.
122
130
.
65.
Lim
,
H. G.
,
Kim
,
S. H.
,
Choi
,
S. Y.
, and
Kim
,
Y. J.
,
2012
, “
Anticalcification Effects of Decellularization, Solvent, and Detoxification Treatment for Genipin and Glutaraldehyde Fixation of Bovine Pericardium
,”
Eur. J. Cardio-Thorac. Surg.
,
41
(
2
), pp.
383
390
.
66.
Kawahara
,
J-I.
,
Ishikawa
,
K.
,
Uchimaru
,
T.
, and
Takaya
,
H.
,
1997
, “
Chemical Cross-Linking by Glutaraldehyde Between Amino Groups: Its Mechanism and Effects
,”
Polymer Modification
,
G.
Swift
,
C. E.
Carraher
, and
C. N.
Bowman
, eds.,
Springer
,
Boston, MA
, pp.
119
131
.
67.
Sung
,
H.-W.
,
Huang
,
R.-N.
,
Huang
,
L. L. H.
,
Tsai
,
C.-C.
, and
Chiu
,
C.-T.
,
1998
, “
Feasibility Study of a Natural Crosslinking Reagent for Biological Tissue Fixation
,”
J. Biomed. Mater. Res.
,
42
(
4
), pp.
560
567
.
68.
Chang
,
Y.
,
Tsai
,
C. C.
,
Liang
,
H. C.
, and
Sung
,
H. W.
,
2001
, “
Reconstruction of the Right Ventricular Outflow Tract With a Bovine Jugular Vein Graft Fixed With a Naturally Occurring Crosslinking Agent (Genipin) in a Canine Model
,”
J. Thorac. Cardiovasc. Surg.
,
122
(
6
), pp.
1208
1218
.
69.
Sisson
,
K.
,
Zhang
,
C.
,
Farach-Carson
,
M. C.
,
Chase
,
D. B.
, and
Rabolt
,
J. F.
,
2009
, “
Evaluation of Cross-Linking Methods for Electrospun Gelatin on Cell Growth and Viability
,”
Biomacromolecules
,
10
(
7
), pp.
1675
1680
.
70.
Balasubramanian
,
P.
,
Prabhakaran
,
M. P.
,
Kai
,
D.
, and
Ramakrishna
,
S.
,
2013
, “
Human Cardiomyocyte Interaction With Electrospun Fibrinogen/Gelatin Nanofibers for Myocardial Regeneration
,”
J. Biomater. Sci. Polym. Ed.
,
24
(
14
), pp.
1660
1675
.
71.
Kumar
,
V. A.
,
Caves
,
J. M.
,
Haller
,
C. A.
,
Dai
,
E.
,
Liu
,
L.
,
Grainger
,
S.
, and
Chaikof
,
E. L.
,
2013
, “
Acellular Vascular Grafts Generated From Collagen and Elastin Analogs
,”
Acta Biomater.
,
9
(
9
), pp.
8067
8074
.
72.
Wise
,
S. G.
,
Byrom
,
M. J.
,
Waterhouse
,
A.
,
Bannon
,
P. G.
,
Ng
,
M. K. C.
, and
Weiss
,
A. S.
,
2011
, “
A Multilayered Synthetic Human Elastin/Polycaprolactone Hybrid Vascular Graft With Tailored Mechanical Properties
,”
Acta Biomater.
,
7
(
1
), pp.
295
303
.
73.
Brown
,
J. H.
,
Das
,
P.
,
DiVito
,
M. D.
,
Ivancic
,
D.
,
Poh Tan
,
L.
, and
Wertheim
,
J. A.
,
2018
, “
Nanofibrous PLGA Electrospun Scaffolds Modified With Type I Collagen Influence Hepatocyte Function and Support Viability In Vivo
,”
Acta Biomater.
,
73
, pp.
217
227
.
74.
Yao
,
Q.
,
Zhang
,
W.
,
Hu
,
Y.
,
Chen
,
J.
,
Shao
,
C.
,
Fan
,
X.
, and
Fu
,
Y.
,
2017
, “
Electrospun Collagen/Poly(L-Lactic Acid-Co-Epsilon-Caprolactone) Scaffolds for Conjunctival Tissue Engineering
,”
Exp. Ther. Med.
,
14
(
5
), pp.
4141
4147
.
75.
Han
,
J.
,
Lazarovici
,
P.
,
Pomerantz
,
C.
,
Chen
,
X.
,
Wei
,
Y.
, and
Lelkes
,
P. I.
,
2011
, “
Co-Electrospun Blends of PLGA, Gelatin, and Elastin as Potential Nonthrombogenic Scaffolds for Vascular Tissue Engineering
,”
Biomacromolecules
,
12
(
2
), pp.
399
408
.
76.
Zhang
,
Q.
,
Lv
,
S.
,
Lu
,
J.
,
Jiang
,
S.
, and
Lin
,
L.
,
2015
, “
Characterization of Polycaprolactone/Collagen Fibrous Scaffolds by Electrospinning and Their Bioactivity
,”
Int. J. Biol. Macromol.
,
76
, pp.
94
101
.
77.
Hackett
,
J. M.
,
Dang
,
T. T.
,
Tsai
,
E. C.
, and
Cao
,
X.
,
2010
, “
Electrospun Biocomposite Polycaprolactone/Collagen Tubes as Scaffolds for Neural Stem Cell Differentiation
,”
Materials
,
3
(
6
), pp.
3714
3728
.
78.
Swindle-Reilly
,
K. E.
,
Paranjape
,
C. S.
, and
Miller
,
C. A.
,
2014
, “
Electrospun Poly(Caprolactone)-Elastin Scaffolds for Peripheral Nerve Regeneration
,”
Prog. Biomater.
,
3
, p.
20
.
79.
Annabi
,
N.
,
Fathi
,
A.
,
Mithieux
,
S. M.
,
Martens
,
P.
,
Weiss
,
A. S.
, and
Dehghani
,
F.
,
2011
, “
The Effect of Elastin on Chondrocyte Adhesion and Proliferation on Poly (ɛ-Caprolactone)/Elastin Composites
,”
Biomaterials
,
32
(
6
), pp.
1517
1525
.
80.
Liu
,
Y.
,
Xu
,
Y.
,
Wang
,
Z.
,
Wen
,
D.
,
Zhang
,
W.
,
Schmull
,
S.
,
Li
,
H.
,
Chen
,
Y.
, and
Xue
,
S.
,
2016
, “
Electrospun Nanofibrous Sheets of Collagen/Elastin/Polycaprolactone Improve Cardiac Repair After Myocardial Infarction
,”
Am. J. Transl. Res.
,
8
(
4
), pp.
1678
1694
.
81.
Yang
,
G.
,
Lin
,
H.
,
Rothrauff
,
B. B.
,
Yu
,
S.
, and
Tuan
,
R. S.
,
2016
, “
Multilayered Polycaprolactone/Gelatin Fiber-Hydrogel Composite for Tendon Tissue Engineering
,”
Acta Biomater.
,
35
, pp.
68
76
.
82.
Abbott
,
W. M.
,
Megerman
,
J.
,
Hasson
,
J. E.
,
L'Italien
,
G.
, and
Warnock
,
D. F.
,
1987
, “
Effect of Compliance Mismatch on Vascular Graft Patency
,”
J. Vasc. Surg.
,
5
(
2
), pp.
376
382
.
83.
Matsumoto
,
T.
,
Naiki
,
T.
, and
Hayashi
,
K.
,
1992
, “
Flow Visualization Analysis in a Model of Artery-Graft Anastomosis
,”
Bio-Med. Mater. Eng.
,
2
(
4
), pp.
171
183
.
84.
Stewart
,
S. F. C.
, and
Lyman
,
D. J.
,
2004
, “
Effects of an Artery/Vascular Graft Compliance Mismatch on Protein Transport: A Numerical Study
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
991
1006
.
85.
Chandran
,
K. B.
,
Gao
,
D.
,
Han
,
G.
,
Baraniewski
,
H.
, and
Corson
,
J. D.
,
1992
, “
Finite-Element Analysis of Arterial Anastomoses With Vein, Dacron and PTFE Grafts
,”
Med. Biol. Eng. Comput.
,
30
(
4
), pp.
413
418
.
86.
Rickard
,
R. F.
,
Meyer
,
C.
, and
Hudson
,
D. A.
,
2009
, “
Computational Modeling of Microarterial Anastomoses With Size Discrepancy (Small-to-Large)
,”
J. Surg. Res.
,
153
(
1
), pp.
1
11
.
87.
Haskett
,
D.
,
Speicher
,
E.
,
Fouts
,
M.
,
Larson
,
D.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2012
, “
The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta
,”
J. Mech.
,
45
(
2
), pp.
722
729
.
88.
Haskett
,
D.
,
Azhar
,
M.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2013
, “
Progressive Alterations in Microstructural Organization and Biomechanical Response in the ApoE Mouse Model of Aneurysm
,”
Biomatter
,
3
(
3
), p.
e24648
.
89.
Haskett
,
D.
,
Doyle
,
J. J.
,
Gard
,
C.
,
Chen
,
H.
,
Ball
,
C.
,
Estabrook
,
M. A.
,
Encinas
,
A. C.
,
Dietz
,
H. C.
,
Utzinger
,
U.
,
Vande Geest
,
J. P.
, and
Azhar
,
M.
,
2012
, “
Altered Tissue Behavior of Non-Aneurysmal Descending Thoracic Aorta in the Mouse Model of Marfan Syndrome
,”
Cell Tissue Res.
,
347
(
1
), pp.
267
277
.
90.
Keyes
,
J. T.
,
Borowicz
,
S. M.
,
Rader
,
J. H.
,
Utzinger
,
U.
,
Azhar
,
M.
, and
Vande Geest
,
J. P.
, “
Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy
,”
Microsc. Microanal.
,
17
(
2
), pp.
167
175
.
91.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Vande Geest
,
J.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.
92.
Keyes
,
J. T.
,
Haskett
,
D. G.
,
Utzinger
,
U.
,
Azhar
,
M.
, and
Vande Geest
,
J. P.
,
2011
, “
Adaptation of a Two-Photon-Microscope-Interfacing Planar Biaxial Testing Device for the Microstructural and Macroscopic Characterization of Small Tubular Tissue Specimens
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
075001
.
93.
Fung, Y. C.
,1982,
Biomechanics Mechanical Properties of Living Tissues
, Springer-Verlag, New York.
94.
Tai
,
N. R.
,
Salacinski
,
H. J.
,
Edwards
,
A.
,
Hamilton
,
G.
, and
Seifalian
,
A. M.
,
2000
, “
Compliance Properties of Conduits Used in Vascular Reconstruction
,”
Br. J. Surg.
,
87
(
11
), pp.
1516
1524
.
95.
Al-Jarrah
,
R.
,
1984
, “
On the Lagrange Interpolation Polynomials of Entire Functions
,”
J. Approximation Theory
,
41
(
2
), pp.
170
178
.
96.
Huang
,
R.
,
Gao
,
X.
,
Wang
,
J.
,
Chen
,
H.
,
Tong
,
C.
,
Tan
,
Y.
, and
Tan
,
Z.
,
2018
, “
Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning
,”
Ann. Biomed. Eng.
,
46
(
9
), pp.
1254
1266
.
97.
Yu
,
E.
,
Mi
,
H. Y.
,
Zhang
,
J.
,
Thomson
,
J. A.
, and
Turng
,
L. S.
,
2018
, “
Development of Biomimetic Thermoplastic Polyurethane/Fibroin Small-Diameter Vascular Grafts Via a Novel Electrospinning Approach
,”
J Biomed Mater Res A.
,
106
(
4
), pp.
985
996
.
98.
Nezarati
,
R. M.
,
Eifert
,
M. B.
,
Dempsey
,
D. K.
, and
Cosgriff-Hernandez
,
E.
,
2015
, “
Electrospun Vascular Grafts With Improved Compliance Matching to Native Vessels
,”
J. Biomed. Mater. Res., Part B
,
103
(
2
), pp.
313
323
.
99.
Salacinski
,
H. J.
,
Goldner
,
S.
,
Giudiceandrea
,
A.
,
Hamilton
,
G.
,
Seifalian
,
A. M.
,
Edwards
,
A.
, and
Carson
,
R. J.
,
2001
, “
The Mechanical Behavior of Vascular Grafts: A Review
,”
J. Biomater. Appl.
,
15
(
3
), pp.
241
278
.
100.
Soletti
,
L.
,
Hong
,
Y.
,
Guan
,
J.
,
Stankus
,
J. J.
,
El-Kurdi
,
M. S.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
,
2010
, “
A Bilayered Elastomeric Scaffold for Tissue Engineering of Small Diameter Vascular Grafts
,”
Acta Biomater.
,
6
(
1
), pp.
110
122
.
101.
Soletti
,
L.
,
Nieponice
,
A.
,
Hong
,
Y.
,
Ye
,
S.-H.
,
Stankus
,
J. J.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
,
2011
, “
In Vivo Performance of a Phospholipid-Coated Bioerodable Elastomeric Graft for Small-Diameter Vascular Applications
,”
J. Biomed. Mater. Res., Part A
,
96
(
2
), pp.
436
448
.
102.
Jankowska
,
M. A.
,
Bartkowiak-Jowsa
,
M.
, and
Bedzinski
,
R.
,
2015
, “
Experimental and Constitutive Modeling Approaches for a Study of Biomechanical Properties of Human Coronary Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
1
12
.
103.
Szafron
,
J. M.
,
Breuer
,
C. K.
,
Wang
,
Y.
, and
Humphrey
,
J. D.
,
2017
, “
Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts
,”
J. Biomech. Eng.
,
139
(
12
), (epub).
104.
Castillo-Cruz
,
O.
,
Pérez-Aranda
,
C.
,
Gamboa
,
F.
,
Cauich-Rodríguez
,
J. V.
,
Mantovani
,
D.
, and
Avilés
,
F.
,
2018
, “
Prediction of Circumferential Compliance and Burst Strength of Polymeric Vascular Grafts
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
332
340
.
105.
Qasim
,
S. B.
,
Najeeb
,
S.
,
Delaine-Smith
,
R. M.
,
Rawlinson
,
A.
, and
Ur Rehman
,
I.
,
2017
, “
Potential of Electrospun Chitosan Fibers as a Surface Layer in Functionally Graded GTR Membrane for Periodontal Regeneration
,”
Dental Mater.
,
33
(
1
), pp.
71
83
.
106.
Gnavi
,
S.
,
Fornasari
,
B. E.
,
Tonda-Turo
,
C.
,
Laurano
,
R.
,
Zanetti
,
M.
,
Ciardelli
,
G.
, and
Geuna
,
S.
,
2015
, “
The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design
,”
Int. J. Mol. Sci.
,
16
(
6
), pp.
12925
12942
.
107.
Ayres
,
C.
,
Bowlin
,
G. L.
,
Henderson
,
S. C.
,
Taylor
,
L.
,
Shultz
,
J.
,
Alexander
,
J.
,
Telemeco
,
T. A.
, and
Simpson
,
D. G.
,
2006
, “
Modulation of Anisotropy in Electrospun Tissue-Engineering Scaffolds: Analysis of Fiber Alignment by the Fast Fourier Transform
,”
Biomaterials
,
27
(
32
), pp.
5524
5534
.
You do not currently have access to this content.