Computational fluid dynamics (CFD) is a powerful method to investigate aneurysms. The primary focus of most investigations has been to compute various hemodynamic parameters to assess the risk posed by an aneurysm. Despite the occurrence of transitional flow in aneurysms, turbulence has not received much attention. In this article, we investigate turbulence in the context of abdominal aortic aneurysms (AAA). Since the clinical practice is to diagnose an AAA on the basis of its size, hypothetical axisymmetric geometries of various sizes are constructed. In general, just after the peak systole, a vortex ring is shed from the expansion region of an AAA. As the ring advects downstream, an azimuthal instability sets in and grows in amplitude thereby destabilizing the ring. The eventual breakdown of the vortex ring into smaller vortices leads to turbulent fluctuations. A residence time study is also done to identify blood recirculation zones, as a recirculation region can lead to degradation of the arterial wall. In some of the geometries simulated, the enhanced local mixing due to turbulence does not allow a recirculation zone to form, whereas in other geometries, turbulence had no effect on them. The location and consequence of a recirculation zone suggest that it could develop into an intraluminal thrombus (ILT). Finally, the possible impact of turbulence on the oscillatory shear index (OSI), a hemodynamic parameter, is explored. To conclude, this study highlights how a small change in the geometric aspects of an AAA can lead to a vastly different flow field.

References

References
1.
Brown
,
L. C.
, and
Powell
,
J. T.
,
1999
, “
Risk Factors for Aneurysm Rupture in Patients Kept Under Ultrasound Surveillance
,”
Ann. Surg.
,
230
(
3
), p.
289
.
2.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
. 17254589
3.
Lasheras
,
J. C.
,
2007
, “
The Biomechanics of Arterial Aneurysms
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
293
319
.
4.
Kent
,
K. C.
,
2014
, “
Abdominal Aortic Aneurysms
,”
New Engl. J. Med.
,
371
(
22
), pp.
2101
2108
.
5.
Glagov
,
S.
,
Zarins
,
C.
,
Giddens
,
D.
, and
Ku
,
D.
,
1988
, “
Hemodynamics and Atherosclerosis. Insights and Perspectives Gained From Studies of Human Arteries
,”
Arch. Pathol. Lab. Med.
,
112
(
10
), pp.
1018
1031
.
6.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.
7.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeterioscler., Thromb., Vasc. Biol.
,
5
(
3
), pp.
293
302
.
8.
Mantha
,
A.
,
Karmonik
,
C.
,
Benndorf
,
G.
,
Strother
,
C.
, and
Metcalfe
,
R.
,
2006
, “
Hemodynamics in a Cerebral Artery Before and After the Formation of an Aneurysm
,”
Am. J. Neuroradiol.
,
27
(
5
), pp.
1113
1118
.
9.
Shimogonya
,
Y.
,
Ishikawa
,
T.
,
Imai
,
Y.
,
Matsuki
,
N.
, and
Yamaguchi
,
T.
,
2009
, “
Can Temporal Fluctuation in Spatial Wall Shear Stress Gradient Initiate a Cerebral Aneurysm? A Proposed Novel Hemodynamic Index, the Gradient Oscillatory Number (GON)
,”
J. Biomech.
,
42
(
4
), pp.
550
554
.
10.
Meng
,
H.
,
Tutino
,
V.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.
11.
Xiang
,
J.
,
Tutino
,
V.
,
Snyder
,
K.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.
12.
Poelma
,
C.
,
Van der Mijle
,
R.
,
Mari
,
J.
,
Tang
,
M.-X.
,
Weinberg
,
P.
, and
Westerweel
,
J.
,
2012
, “
Ultrasound Imaging Velocimetry: Toward Reliable Wall Shear Stress Measurements
,”
Eur. J. Mech. B/Fluids
,
35
, pp.
70
75
.
13.
Poelma
,
C.
,
Watton
,
P. N.
, and
Ventikos
,
Y.
,
2015
, “
Transitional Flow in Aneurysms and the Computation of Haemodynamic Parameters
,”
J. R. Soc. Interface
,
12
(
105
), p.
20141394
.
14.
Yip
,
T.
, and
Yu
,
S.
,
2001
, “
Cyclic Transition to Turbulence in Rigid Abdominal Aortic Aneurysm Models
,”
Fluid Dyn. Res.
,
29
(
2
), pp.
81
113
.
15.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic–Morphologic Discriminants for Intracranial Aneurysm Rupture
,”
Stroke
,
42
(
1
), pp.
144
152
.
16.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known
,”
J. Physiol.
,
127
(
3
), p.
553
.
17.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows: Part 2—Pulsatile Flow
,”
J. Fluid Mech.
,
582
, pp.
281
318
.
18.
Poelma
,
C.
, and
Hierck
,
B.
,
2015
, “
Hemodynamics in the Developing Cardiovascular System
,”
Heat Transfer and Fluid Flow in Biological Processes
,
Elsevier
, Amsterdam, The Netherlands, pp.
371
405
.
19.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Circulation
,
Springer Science and Business Media
, Berlin.
20.
Winter
,
D.
, and
Nerem
,
R.
,
1984
, “
Turbulence in Pulsatile Flows
,”
Ann. Biomed. Eng.
,
12
(
4
), pp.
357
369
.
21.
Rawat
,
D. S.
,
2017
, “
Turbulence in Aneurysms: Numerical Investigation in Abdominal Aortic Aneurysms
,” Master's thesis, Delft University of Technology, Delft, The Netherlands.
22.
Finol
,
E. A.
, and
Amon
,
C. H.
,
2001
, “
Blood Flow in Abdominal Aortic Aneurysms: Pulsatile Flow Hemodynamics
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
474
484
.
23.
Mills
,
C.
,
Gabe
,
I.
,
Gault
,
J.
,
Mason
,
D.
,
Ross
,
J.
,
Braunwald
,
E.
, and
Shillingford
,
J.
,
1970
, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
,
4
(
4
), p.
405
.
24.
Sanmiguel-Rojas
,
E.
, and
Mullin
,
T.
,
2012
, “
Finite-Amplitude Solutions in the Flow Through a Sudden Expansion in a Circular Pipe
,”
J. Fluid Mech.
,
691
, pp.
201
213
.
25.
Selvam
,
K.
,
Peixinho
,
J.
, and
Willis
,
A. P.
,
2015
, “
Localised Turbulence in a Circular Pipe Flow With Gradual Expansion
,”
J. Fluid Mech.
,
771
, p. R2.
26.
Stewart
,
S. F. C.
,
Paterson
,
E. G.
,
Burgreen
,
G. W.
,
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Berman
,
M. R.
,
Myers
,
M. R.
, and
Malinauskas
,
R. A.
,
2012
, “
Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study
,”
Cardiovasc. Eng. Technol.
,
3
(
2
), pp.
139
160
.
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
28.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.
29.
Tanaka
,
H.
,
Zaima
,
N.
,
Sasaki
,
T.
,
Hayasaka
,
T.
,
Goto-Inoue
,
N.
,
Onoue
,
K.
,
Ikegami
,
K.
,
Morita
,
Y.
,
Yamamoto
,
N.
,
Mano
,
Y.
,
Sano
,
M.
,
Saito
,
T.
,
Sato
,
K.
,
Konno
,
H.
,
Setou
,
M.
, and
Unno
,
N.
,
2013
, “
Adventitial Vasa Vasorum Arteriosclerosis in Abdominal Aortic Aneurysm
,”
PLoS One
,
8
(
2
), p.
e57398
.
30.
Vorp
,
D. A.
,
Lee
,
P. C.
,
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Nemoto
,
E. M.
,
Ogawa
,
S.
, and
Webster
,
M. W.
,
2001
, “
Association of Intraluminal Thrombus in Abdominal Aortic Aneurysm With Local Hypoxia and Wall Weakening
,”
J. Vasc. Surg.
,
34
(
2
), pp.
291
299
.
31.
Archer
,
P.
,
Thomas
,
T.
, and
Coleman
,
G.
,
2008
, “
Direct Numerical Simulation of Vortex Ring Evolution From the Laminar to the Early Turbulent Regime
,”
J. Fluid Mech.
,
598
, pp.
201
226
.
32.
Stewart
,
K.
,
Niebel
,
C.
,
Jung
,
S.
, and
Vlachos
,
P.
,
2012
, “
The Decay of Confined Vortex Rings
,”
Exp. Fluids
,
53
(
1
), pp.
163
171
.
33.
Leweke
,
T.
,
Le Dizès
,
S.
, and
Williamson
,
C. H.
,
2016
, “
Dynamics and Instabilities of Vortex Pairs
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
507
541
.
34.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” National Aeronautics and Space Administration, Washington, DC, Report No. 19890015184.
35.
Widnall
,
S. E.
,
Bliss
,
D. B.
, and
Tsai
,
C.-Y.
,
1974
, “
The Instability of Short Waves on a Vortex Ring
,”
J. Fluid Mech.
,
66
(
01
), pp.
35
47
.
36.
Kerswell
,
R. R.
,
2002
, “
Elliptical Instability
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
83
113
.
37.
Behr-Rasmussen
,
C.
,
Grøndal
,
N.
,
Bramsen
,
M.
,
Thomsen
,
M.
, and
Lindholt
,
J. S.
,
2014
, “
Mural Thrombus and the Progression of Abdominal Aortic Aneurysms: A Large Population-Based Prospective Cohort Study
,”
Eur. J. Vasc. Endovascular Surg.
,
48
(
3
), pp.
301
307
.
38.
Doyle
,
B. J.
,
Corbett
,
T. J.
,
Callanan
,
A.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
,
2009
, “
An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm
,”
J. Endovascular Ther.
,
16
(
3
), pp.
322
335
.
You do not currently have access to this content.