Regional tissue mechanics play a fundamental role in the patient-specific function and remodeling of the cardiovascular system. Nevertheless, regional in vivo assessments of aortic kinematics remain lacking due to the challenge of imaging the thin aortic wall. Herein, we present a novel application of displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify the regional displacement and circumferential Green strain of the thoracic and abdominal aorta. Two-dimensional (2D) spiral cine DENSE and steady-state free procession (SSFP) cine images were acquired at 3T at either the infrarenal abdominal aorta (IAA), descending thoracic aorta (DTA), or distal aortic arch (DAA) in a pilot study of six healthy volunteers (22–59 y.o., 4 females). DENSE data were processed with multiple custom noise reduction techniques including time-smoothing, displacement vector smoothing, sectorized spatial smoothing, and reference point averaging to calculate circumferential Green strain across 16 equispaced sectors around the aorta. Each volunteer was scanned twice to evaluate interstudy repeatability. Circumferential Green strain was heterogeneously distributed in all volunteers and locations. The mean spatial heterogeneity index (standard deviation of all sector values divided by the mean strain) was 0.37 in the IAA, 0.28 in the DTA, and 0.59 in the DAA. Mean (homogenized) peak strain by DENSE for each cross section was consistent with the homogenized linearized strain estimated from SSFP cine. The mean difference in peak strain across all sectors following repeat imaging was −0.1±2.3%, with a mean absolute difference of 1.7%. Aortic cine DENSE MRI is a viable noninvasive technique for quantifying heterogeneous regional aortic wall strain and has significant potential to improve patient-specific clinical assessments of numerous aortopathies, as well as to provide the lacking spatiotemporal data required to refine patient-specific computational models of aortic growth and remodeling.

References

References
1.
Kochanek
,
K. D.
,
Xu
,
J.
,
Murphy
,
S. L.
,
Miniño
,
A. M.
, and
Kung
,
H. C.
,
2011
, “
Deaths: Final Data for 2009
,”
Natl. Vital Stat. Rep.
,
60
(
3
), pp.
1
116
.
2.
Agency for Healthcare Research and Quality
,
2006
,
Hospital Cost and Utilization Project: Nationwide Inpatient Sample Data Set
,
Agency for Healthcare Research and Quality
,
Rockville, MD
.
3.
Chitiboi
,
T.
, and
Axel
,
L.
,
2017
, “
Magnetic Resonance Imaging of Myocardial Strain: A Review of Current Approaches
,”
J. Magn. Reson. Imaging
,
46
(
5
), pp.
1236
1280
.
4.
Tierney
,
Á.
,
Callanan
,
A.
, and
McGloughlin
,
T. M.
,
2012
, “
Use of Regional Mechanical Properties of Abdominal Aortic Aneurysms to Advance Finite Element Modeling of Rupture Risk
,”
J. Endovasc. Ther.
,
19
(
1
), pp.
100
114
.
5.
Karatolios
,
K.
,
Wittek
,
A.
,
Nwe
,
T. H.
,
Bihari
,
P.
,
Shelke
,
A.
,
Josef
,
D.
,
Schmitz-Rixen
,
T.
,
Geks
,
J.
,
Maisch
,
B.
,
Blase
,
C.
,
Moosdorf
,
R.
, and
Vogt
,
S.
,
2013
, “
Method for Aortic Wall Strain Measurement With Three-Dimensional Ultrasound Speckle Tracking and Fitted Finite Element Analysis
,”
Ann. Thorac. Surg.
,
96
(
5
), pp.
1664
1671
.
6.
Draney
,
M. T.
,
Herfkens
,
R. J.
,
Hughes
,
T. J.
,
Pelc
,
N. J.
,
Wedding
,
K. L.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2002
, “
Quantification of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
30
(
8
), pp.
1033
1045
.
7.
Satriano
,
A.
,
Rivolo
,
S.
,
Martufi
,
G.
,
Finol
,
E. A.
, and
Di Martino
,
E. S.
,
2015
, “
In Vivo Strain Assessment of the Abdominal Aortic Aneurysm
,”
J. Biomech.
,
48
(
2
), pp.
354
360
.
8.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
, pp.
172
174
.
9.
Akazawa
,
Y.
,
Motoki
,
N.
,
Tada
,
A.
,
Yamazaki
,
S.
,
Hachiya
,
A.
,
Matsuzaki
,
S.
,
Kamiya
,
M.
,
Nakamura
,
T.
,
Kosho
,
T.
, and
Inaba
,
Y.
,
2016
, “
Decreased Aortic Elasticity in Children With Marfan Syndrome or Loeys-Dietz Syndrome
,”
Circ. J.
,
80
(
11
), pp.
2369
2375
.
10.
Moaref
,
A.
,
Khavanin
,
M.
, and
Shekarforoush
,
S.
,
2014
, “
Aortic Distensibility in Bicuspid Aortic Valve Patients With Normal Aortic Diameter
,”
Ther. Adv. Cardiovasc. Dis.
,
8
(
4
), pp.
128
132
.
11.
Hoegh
,
A.
, and
Lindholt
,
J. S.
,
2009
, “
Basic Science Review. Vascular Distensibility as a Predictive Tool in the Management of Small Asymptomatic Abdominal Aortic Aneurysms
,”
Vasc. Endovasc. Surg.
,
43
(
4
), pp.
333
338
.
12.
Molacek
,
J.
,
Baxa
,
J.
,
Houdek
,
K.
,
Treska
,
V.
, and
Ferda
,
J.
,
2011
, “
Assessment of Abdominal Aortic Aneurysm Wall Distensibility With Electrocardiography-Gated Computed Tomography
,”
Ann. Vasc. Surg.
,
25
(
8
), pp.
1036
1042
.
13.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2012
, “
Importance of Initial Aortic Properties on the Evolving Regional Anisotropy, Stiffness and Wall Thickness of Human Abdominal Aortic Aneurysms
,”
J. R. Soc. Interface
,
9
(
74
), pp.
2047
2058
.
14.
Zhong
,
X.
,
Spottiswoode
,
B. S.
,
Meyer
,
C. H.
,
Kramer
,
C. M.
, and
Epstein
,
F. H.
,
2010
, “
Imaging Three-Dimensional Myocardial Mechanics Using Navigator-Gated Volumetric Spiral Cine DENSE MRI
,”
Magn. Reson. Med.
,
64
(
4
), pp.
1089
1097
.
15.
Spottiswoode
,
B. S.
,
Zhong
,
X.
,
Hess
,
A. T.
,
Kramer
,
C. M.
,
Meintjes
,
E. M.
,
Mayosi
,
B. M.
, and
Epstein
,
F. H.
,
2007
, “
Tracking Myocardial Motion From Cine DENSE Images Using Spatiotemporal Phase Unwrapping and Temporal Fitting
,”
IEEE Trans. Med. Imaging
,
26
(
1
), pp.
15
30
.
16.
Derwich
,
W.
,
Wittek
,
A.
,
Pfister
,
K.
,
Nelson
,
K.
,
Bereiter-Hahn
,
J.
,
Fritzen
,
C. P.
,
Blase
,
C.
, and
Schmitz-Rixen
,
T.
,
2016
, “
High Resolution Strain Analysis Comparing Aorta and Abdominal Aortic Aneurysm With Real Time Three Dimensional Speckle Tracking Ultrasound
,”
Eur. J. Vasc. Endovasc. Surg.
,
51
(
2
), pp.
187
193
.
17.
Wittek
,
A.
,
Karatolios
,
K.
,
Fritzen
,
C. P.
,
Bereiter-Hahn
,
J.
,
Schieffer
,
B.
,
Moosdorf
,
R.
,
Vogt
,
S.
, and
Blase
,
C.
,
2016
, “
Cyclic Three-Dimensional Wall Motion of the Human Ascending and Abdominal Aorta Characterized by Time-Resolved Three-Dimensional Ultrasound Speckle Tracking
,”
Biomech. Model Mechanobiol.
,
15
(
5
), pp.
1375
1388
.
18.
Astrand
,
H.
,
Stalhand
,
J.
,
Karlsson
,
J.
,
Karlsson
,
M.
,
Sonesson
,
B.
, and
Länne
,
T.
,
2011
, “
In Vivo Estimation of the Contribution of Elastin and Collagen to the Mechanical Properties in the Human Abdominal Aorta: Effect of Age and Sex
,”
J. Appl. Physiol.
,
110
(
1
), pp.
176
187
. (1985)
19.
Morrison
,
T. M.
,
Choi
,
G.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2009
, “
Circumferential and Longitudinal Cyclic Strain of the Human Thoracic Aorta: Age-Related Changes
,”
J. Vasc. Surg.
,
49
(
4
), pp.
1029
1036
.
20.
Haraldsson
,
H.
,
Hope
,
M.
,
Acevedo-Bolton
,
G.
,
Tseng
,
E.
,
Zhong
,
X.
,
Epstein
,
F. H.
,
Ge
,
L.
, and
Saloner
,
D.
,
2014
, “
Feasibility of Asymmetric Stretch Assessment in the Ascending Aortic Wall With DENSE Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
16
(
1
), p.
6
.
21.
Grytsan
,
A.
,
Watton
,
P. N.
, and
Holzapfel
,
G. A.
,
2015
, “
A Thick-Walled Fluid-Solid-Growth Model of Abdominal Aortic Aneurysm Evolution: Application to a Patient-Specific Geometry
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031008
.
22.
Farsad
,
M.
,
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2015
, “
Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine
,”
ASME J. Biomech. Eng.
,
137
(
9
), (epub).
23.
Wilson
,
J. S.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2013
, “
Parametric Study of Effects of Collagen Turnover on the Natural History of Abdominal Aortic Aneurysms
,”
Proc. Math. Phys. Eng. Sci.
,
469
(
2150
), p.
2150
.
You do not currently have access to this content.