Significant advances in biomedical science often leverage powerful computational and experimental modeling platforms. We present a framework named physiology simulation coupled experiment (“PSCOPE”) that can capitalize on the strengths of both types of platforms in a single hybrid model. PSCOPE uses an iterative method to couple an in vitro mock circuit to a lumped-parameter numerical simulation of physiology, obtaining closed-loop feedback between the two. We first compared the results of Fontan graft obstruction scenarios modeled using both PSCOPE and an established multiscale computational fluid dynamics method; the normalized root-mean-square error values of important physiologic parameters were between 0.1% and 2.1%, confirming the fidelity of the PSCOPE framework. Next, we demonstrate an example application of PSCOPE to model a scenario beyond the current capabilities of multiscale computational methods—the implantation of a Jarvik 2000 blood pump for cavopulmonary support in the single-ventricle circulation; we found that the commercial Jarvik 2000 controller can be modified to produce a suitable rotor speed for augmenting cardiac output by approximately 20% while maintaining blood pressures within safe ranges. The unified modeling framework enables a testing environment which simultaneously operates a medical device and performs computational simulations of the resulting physiology, providing a tool for physically testing medical devices with simulated physiologic feedback.

References

1.
Westerhof
,
N.
,
Bosman
,
F.
,
De Vries
,
C. J.
, and
Noordergraaf
,
A.
,
1969
, “
Analog Studies of the Human Systemic Arterial Tree
,”
J. Biomech.
,
2
(
2
), pp.
121
143
.
2.
Kung
,
E.
,
Perry
,
J. C.
,
Davis
,
C.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Giardini
,
A.
,
Hsia
,
T. Y.
, and
Marsden
,
A.
,
2015
, “
Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1335
1347
.
3.
Pekkan
,
K.
,
Frakes
,
D.
,
De Zelicourt
,
D.
,
Lucas
,
C. W.
,
Parks
,
W. J.
, and
Yoganathan
,
A. P.
,
2005
, “
Coupling Pediatric Ventricle Assist Devices to the Fontan Circulation: Simulations With a Lumped-Parameter Model
,”
ASAIO J.
,
51
(
5
), pp.
618
628
.
4.
Conover
,
T.
,
Hlavacek
,
A. M.
,
Migliavacca
,
F.
,
Kung
,
E.
,
Dorfman
,
A.
,
Figliola
,
R. S.
, and
Hsia
,
T. Y.
, and
Modeling of Congenital Hearts Alliance (MOCHA) Investigators
,
2018
, “
An Interactive Simulation Tool for Patient-Specific Clinical Decision Support in Single-Ventricle Physiology
,”
J. Thorac. Cardiovasc. Surg.
,
155
(
2
), pp.
712
721
.
5.
Wu
,
W.
,
Pott
,
D.
,
Mazza
,
B.
,
Sironi
,
T.
,
Dordoni
,
E.
,
Chiastra
,
C.
,
Petrini
,
L.
,
Pennati
,
G.
,
Dubini
,
G.
,
Steinseifer
,
U.
,
Sonntag
,
S.
,
Kuetting
,
M.
, and
Migliavacca
,
F.
,
2016
, “
Fluid-Structure Interaction Model of a Percutaneous Aortic Valve: Comparison With an In Vivo Test and Feasibility Study in a Patient-Specific Case
,”
Ann. Biomed. Eng.
,
44
(
2
), pp.
590
603
.
6.
Burgreen
,
G. W.
,
Antaki
,
J. F.
,
Wu
,
Z. J.
, and
Holmes
,
A. J.
,
2001
, “
Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps
,”
Artif. Organs
,
25
(
5
), pp.
336
340
.
7.
Kung
,
E.
,
Baretta
,
A.
,
Baker
,
C.
,
Arbia
,
G.
,
Biglino
,
G.
,
Corsini
,
C.
,
Schievano
,
S.
,
Vignon-Clementel
,
I. E.
,
Dubini
,
G.
,
Pennati
,
G.
,
Taylor
,
A.
,
Dorfman
,
A.
,
Hlavacek
,
A. M.
,
Marsden
,
A. L.
,
Hsia
,
T.-Y.
, and
Migliavacca
,
F.
,
2013
, “
Predictive Modeling of the Virtual Hemi-Fontan Operation for Second Stage Single Ventricle Palliation: Two Patient-Specific Cases
,”
J. Mech.
,
46
(
2
), pp.
423
429
8.
Ceballos
,
A.
,
Argueta-Morales
,
I. R.
,
Divo
,
E.
,
Osorio
,
R.
,
Caldarone
,
C. A.
,
Kassab
,
A. J.
, and
Decampli
,
W. M.
,
2012
, “
Computational Analysis of Hybrid Norwood Circulation With Distal Aortic Arch Obstruction and Reverse Blalock-Taussig Shunt
,”
Ann. Thorac. Surg.
,
94
(
5
), pp.
1540
1550
.
9.
Baloa
,
L. A.
,
Boston
,
J. R.
, and
Antaki
,
J. F.
,
2001
, “
Elastance-Based Control of a Mock Circulatory System
,”
Ann. Biomed. Eng.
,
29
(
3
), pp.
244
251
.
10.
Gregory
,
S. D.
,
Stevens
,
M.
,
Timms
,
D.
, and
Pearcy
,
M.
,
2011
, “
Replication of the Frank-Starling Response in a Mock Circulation Loop
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30–Sept. 3
, pp.
6825
6828
.
11.
Gwak
,
K.-W.
,
Noh
,
M. D.
,
Paden
,
B. E.
, and
Antaki
,
J. F.
,
2005
, “
Fluidic Operational Amplifier for Mock Circulatory Systems-Simulation and Experimental Results
,”
American Control Conference
,
Portland, OR
,
June 8–10
, pp.
3817
3822
.
12.
Pantalos
,
G. M.
,
Koenig
,
S. C.
,
Gillars
,
K. J.
,
Giridharan
,
G. A.
, and
Ewert
,
D. L.
,
2004
, “
Characterization of an Adult Mock Circulation for Testing Cardiac Support Devices
,”
ASAIO J.
,
50
(
1
), pp.
37
46
.
13.
Ferrari
,
G.
,
De Lazzari
,
C.
,
Mimmo
,
R.
,
Tosti
,
G.
,
Ambrosi
,
D.
, and
Gorczynska
,
K.
,
1998
, “
A Computer Controlled Mock Circulatory System for Mono- and Biventricular Assist Device Testing
,”
Int. J. Artif. Organs
,
21
(
1
), pp.
26
36
.https://www.ncbi.nlm.nih.gov/pubmed/9554823?dopt=Abstract
14.
Pillon
,
M.
,
Duffour
,
H.
, and
Jufer
,
M.
,
1992
, “
In Vitro Experiments: Circulatory Assist Device Interaction With a Virtual Cardiovascular System
,”
14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Paris, France
,
Oct. 29–Nov. 1
, pp.
740
741
.
15.
Hanson
,
B. M.
,
Levesley
,
M. C.
,
Watterson
,
K.
, and
Walker
,
P. G.
,
2007
, “
Hardware-in-the-Loop-Simulation of the Cardiovascular System, With Assist Device Testing Application
,”
Med. Eng. Phys.
,
29
(
3
), pp.
367
374
.
16.
Alazmani
,
A.
,
Keeling
,
D. G.
,
Walker
,
P. G.
,
Abbas
,
S. K.
,
Jaber
,
O.
,
Watterson
,
K.
, and
Levesley
,
M. C.
,
2012
, “
Introducing a Hardware-in-the-Loop Simulation of the Cardiovascular System
,”
Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
),
Rome, Italy
,
June 24–27
, pp.
153
158
.
17.
Nestler
,
F.
,
Bradley
,
A. P.
,
Wilson
,
S. J.
,
Timms
,
D. L.
,
Frazier
,
O. H.
, and
Cohn
,
W. E.
,
2014
, “
A Hybrid Mock Circulation Loop for a Total Artificial Heart
,”
Artif. Organs
,
38
(
9
), pp.
775
782
.
18.
Darowski
,
M.
,
Kozarski
,
M.
,
Ferrari
,
G.
,
Zieliński
,
K.
,
Górczyńska
,
K.
,
Szczepanowski
,
A.
,
Pałko
,
K.
,
Fresiello
,
L.
, and
Molfetta
,
A. D.
,
2013
, “
A New Hybrid (Hydro-Numerical) Model of the Circulatory System
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
61
(
4
), pp.
993
1003
.https://content.sciendo.com/view/journals/bpasts/61/4/article-p993.xml
19.
Ferrari
,
G.
,
De Lazzari
,
C.
,
Kozarski
,
M.
,
Clemente
,
F.
,
Górczyńska
,
K.
,
Mimmo
,
R.
,
Monnanni
,
E.
,
Tosti
,
G.
, and
Guaragno
,
M.
,
2002
, “
A Hybrid Mock Circulatory System: Testing a Prototype Under Physiologic and Pathological Conditions
,”
ASAIO J.
,
48
(
5
), pp.
487
494
.
20.
Kozarski
,
M.
,
Ferrari
,
G.
,
Zieliński
,
K.
,
Górczyńska
,
K.
,
Pałko
,
K. J.
,
Tokarz
,
A.
, and
Darowski
,
M.
,
2008
, “
A New Hybrid Electro-Numerical Model of the Left Ventricle
,”
Comput. Biol. Med.
,
38
(
9
), pp.
979
989
.
21.
Kozarski
,
M.
,
Suwalski
,
P.
,
Zieliński
,
K.
,
Górczyńska
,
K.
,
Szafron
,
B.
,
Pałko
,
K.
,
Smoczyński
,
R.
, and
Darowski
,
M.
,
2015
, “
A Hybrid (Hydro-Numerical) Circulatory Model: Investigations of Mechanical Aortic Valves and a Numerical Valve Model
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
63
(
3
), pp.
605
612
.
22.
Ochsner
,
G.
,
Amacher
,
R.
,
Amstutz
,
A.
,
Plass
,
A.
,
Schmid Daners
,
M.
,
Tevaearai
,
H.
,
Vandenberghe
,
S.
,
Wilhelm
,
M. J.
, and
Guzzella
,
L.
,
2013
, “
A Novel Interface for Hybrid Mock Circulations to Evaluate Ventricular Assist Devices
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
507
516
.
23.
Kung
,
E.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Hsia
,
T.-Y.
,
Figliola
,
R. S.
,
Marsden
,
A.
, and
Giardini
,
A.
,
2014
, “
A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed-Loop Lumped-Parameter Model
,”
ASME J. Biomech. Eng.
,
136
(
8
), p. 081007.
24.
Kung
,
E.
,
Les
,
A.
,
Figueroa
,
C. A.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R.
,
McConnell
,
M.
, and
Taylor
,
C.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.
25.
Kung
,
E. O.
,
Les
,
A. S.
,
Medina
,
F.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041003
.
26.
Giannico
,
S.
,
Hammad
,
F.
,
Amodeo
,
A.
,
Michielon
,
G.
,
Drago
,
F.
,
Turchetta
,
A.
,
Di Donato
,
R.
, and
Sanders
,
S. P.
,
2006
, “
Clinical Outcome of 193 Extracardiac Fontan Patients: The First 15 Years
,”
J. Am. Coll. Cardiol.
,
47
(
10
), pp.
2065
2073
.
27.
Alexi-Meskishvili
,
V.
,
Ovroutski
,
S.
,
Ewert
,
P.
,
Dähnert
,
I.
,
Berger
,
F.
,
Lange
,
P. E.
, and
Hetzer
,
R.
,
2000
, “
Optimal Conduit Size for Extracardiac Fontan Operation
,”
Eur. J. Cardio-Thorac. Surg.
,
18
(
6
), pp.
690
695
.
28.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.
29.
Goubergrits
,
L.
,
Mevert
,
R.
,
Yevtushenko
,
P.
,
Schaller
,
J.
,
Kertzscher
,
U.
,
Meier
,
S.
,
Schubert
,
S.
,
Riesenkampff
,
E.
, and
Kuehne
,
T.
,
2013
, “
The Impact of MRI-Based Inflow for the Hemodynamic Evaluation of Aortic Coarctation
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2575
2587
.
30.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2015
, “
A Bi-Partitioned Iterative Algorithm for Solving Linear Systems Arising From Incompressible Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
40
62
.
31.
Steinman
,
D. A.
,
Hoi
,
Y.
,
Fahy
,
P.
,
Morris
,
L.
,
Walsh
,
M. T.
,
Aristokleous
,
N.
,
Anayiotos
,
A. S.
,
Papaharilaou
,
Y.
,
Arzani
,
A.
,
Shadden
,
S. C.
,
Berg
,
P.
,
Janiga
,
G.
,
Bols
,
J.
,
Segers
,
P.
,
Bressloff
,
N. W.
,
Cibis
,
M.
,
Gijsen
,
F. H.
,
Cito
,
S.
,
Pallarés
,
J.
,
Browne
,
L. D.
,
Costelloe
,
J. A.
,
Lynch
,
A. G.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Fu
,
W.
,
Qiao
,
A.
,
Hodis
,
S.
,
Kallmes
,
D. F.
,
Kalsi
,
H.
,
Long
,
Q.
,
Kheyfets
,
V. O.
,
Finol
,
E. A.
,
Kono
,
K.
,
Malek
,
A. M.
,
Lauric
,
A.
,
Menon
,
P. G.
,
Pekkan
,
K.
,
Esmaily Moghadam
,
M.
,
Marsden
,
A. L.
,
Oshima
,
M.
,
Katagiri
,
K.
,
Peiffer
,
V.
,
Mohamied
,
Y.
,
Sherwin
,
S. J.
,
Schaller
,
J.
,
Goubergrits
,
L.
,
Usera
,
G.
,
Mendina
,
M.
,
Valen-Sendstad
,
K.
,
Habets
,
D. F.
,
Xiang
,
J.
,
Meng
,
H.
,
Yu
,
Y.
,
Karniadakis
,
G. E.
,
Shaffer
,
N.
, and
Loth
,
F.
,
2013
, “
Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021016
.
32.
Arbia
,
G.
,
Corsini
,
C.
,
Esmaily Moghadam
,
M.
,
Marsden
,
A. L.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Hsia
,
T. Y.
,
Vignon-Clementel
,
I. E.
, and
Investigators
,
M. O. C. H. A. M.
,
2014
, “
Numerical Blood Flow Simulation in Surgical Corrections: What Do we Need for an Accurate Analysis?
,”
J. Surg. Res.
,
186
(
1
), pp.
44
55
.
33.
Prêtre
,
R.
,
Häussler
,
A.
,
Bettex
,
D.
, and
Genoni
,
M.
,
2008
, “
Right-Sided Univentricular Cardiac Assistance in a Failing Fontan Circulation
,”
Ann. Thorac. Surg.
,
86
(
3
), pp.
1018
1020
.
34.
Riemer
,
R. K.
,
Amir
,
G.
,
Reichenbach
,
S. H.
, and
Reinhartz
,
O.
,
2005
, “
Mechanical Support of Total Cavopulmonary Connection With an Axial Flow Pump
,”
J. Thorac. Cardiovasc. Surg.
,
130
(
2
), pp.
351
354
.
35.
Liang
,
F.
, and
Liu
,
H.
,
2006
, “
Simulation of Hemodynamic Responses to the Valsalva Maneuver: An Integrative Computational Model of the Cardiovascular System and the Autonomic Nervous System
,”
J. Physiol. Sci.
,
56
(
1
), pp.
45
65
.
You do not currently have access to this content.