Many physiological systems involve strong interactions between fluids and solids, posing a significant challenge when modeling biomechanics. The objective of this study was to implement a fluid–structure interaction (FSI) solver in the free, open-source finite element code FEBio, that combined the existing solid mechanics and rigid body dynamics solver with a recently developed computational fluid dynamics (CFD) solver. A novel Galerkin-based finite element FSI formulation was introduced based on mixture theory, where the FSI domain was described as a mixture of fluid and solid constituents that have distinct motions. The mesh was defined on the solid domain, specialized to have zero mass, negligible stiffness, and zero frictional interactions with the fluid, whereas the fluid was modeled as isothermal and compressible. The mixture framework provided the foundation for evaluating material time derivatives in a material frame for the solid and in a spatial frame for the fluid. Similar to our recently reported CFD solver, our FSI formulation did not require stabilization methods to achieve good convergence, producing a compact set of equations and code implementation. The code was successfully verified against benchmark problems from the FSI literature and an analytical solution for squeeze-film lubrication. It was validated against experimental measurements of the flow rate in a peristaltic pump and illustrated using non-Newtonian blood flow through a bifurcated carotid artery with a thick arterial wall. The successful formulation and implementation of this FSI solver enhance the multiphysics modeling capabilities in febio relevant to the biomechanics and biophysics communities.

References

References
1.
Zhang
,
J.
,
2000
, “
Preconditioned Krylov Subspace Methods for Solving Nonsymmetric Matrices From CFD Applications
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
3
), pp.
825
840
.
2.
Wolters
,
B.
,
Rutten
,
M.
,
Schurink
,
G.
,
Kose
,
U.
,
de Hart
,
J.
, and
van de Vosse
,
F.
,
2005
, “
A Patient-Specific Computational Model of Fluid–Structure Interaction in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
27
(
10
), pp.
871
883
.
3.
Krittian
,
S.
,
Janoske
,
U.
,
Oertel
,
H.
, and
Bohlke
,
T.
,
2010
, “
Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1426
1441
.
4.
Moghani
,
T.
,
Butler
,
J. P.
,
Lin
,
J. L.-W.
, and
Loring
,
S. H.
,
2007
, “
Finite Element Simulation of Elastohydrodynamic Lubrication of Soft Biological Tissues
,”
Comput. Struct.
,
85
(
11–14
), pp.
1114
1120
.
5.
Sweetman
,
B.
, and
Linninger
,
A. A.
,
2011
, “
Cerebrospinal Fluid Flow Dynamics in the Central Nervous System
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
484
496
.
6.
Sweetman
,
B.
,
Xenos
,
M.
,
Zitella
,
L.
, and
Linninger
,
A. A.
,
2011
, “
Three-Dimensional Computational Prediction of Cerebrospinal Fluid Flow in the Human Brain
,”
Comput. Biol. Med.
,
41
(
2
), pp.
67
75
.
7.
Masoumi
,
N.
,
Framanzad
,
F.
,
Zamanian
,
B.
,
Seddighi
,
A. S.
,
Moosavi
,
M. H.
,
Najarian
,
S.
, and
Bastani
,
D.
,
2013
, “
2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow
,”
Basic Clin. Neurosci.
,
4
(
1
), pp.
64
75
.https://www.ncbi.nlm.nih.gov/pubmed/25337330
8.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow–Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.
9.
Malve
,
M.
,
del Palomar
,
A. P.
,
Chandra
,
S.
,
Lopez-Villalobos
,
J. L.
,
Mena
,
A.
,
Finol
,
E. A.
,
Ginel
,
A.
, and
Doblare
,
M.
,
2011
, “
FSI Analysis of a Healthy and a Stenotic Human Trachea Under Impedance-Based Boundary Conditions
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
021001
.
10.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1993
, “
Elementary Mechanics of the Endothelium of Blood Vessels
,”
ASME J. Biomech. Eng.
,
115
(
1
), p.
1
.
11.
Barakat
,
A. I.
,
2001
, “
A Model for Shear Stress-Induced Deformation of a Flow Sensor on the Surface of Vascular Endothelial Cells
,”
J. Theor. Biol.
,
210
(
2
), pp.
221
236
.
12.
Fritton
,
S. P.
, and
Weinbaum
,
S.
,
2009
, “
Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
347
374
.
13.
Kwon
,
R. Y.
, and
Frangos
,
J. A.
,
2010
, “
Quantification of Lacunar–Canalicular Interstitial Fluid Flow Through Computational Modeling of Fluorescence Recovery After Photobleaching
,”
Cell. Mol. Bioeng.
,
3
(
3
), pp.
296
306
.
14.
Scheiner
,
S.
,
Pivonka
,
P.
, and
Hellmich
,
C.
,
2016
, “
Poromicromechanics Reveals That Physiological Bone Strains Induce Osteocyte-Stimulating Lacunar Pressure
,”
Biomech. Model. Mechanobiol.
,
15
(
1
), pp.
9
28
.
15.
Fiore
,
G. B.
,
Redaelli
,
A.
,
Guadagni
,
G.
,
Inzoli
,
F.
, and
Fumero
,
R.
,
2002
, “
Development of a New Disposable Pulsatile Pump for Cardiopulmonary Bypass: Computational Fluid-Dynamic Design and In Vitro Tests
,”
ASAIO J.
,
48
(
3
), pp.
260
267
.
16.
Vo
,
G. D.
,
Brindle
,
E.
, and
Heys
,
J.
,
2010
, “
An Experimentally Validated Immersed Boundary Model of Fluid–Biofilm Interaction
,”
Water Sci. Technol.
,
61
(
12
), p.
3033
.
17.
Malve
,
M.
,
del Palomar
,
A. P.
,
Chandra
,
S.
,
Lopez-Villalobos
,
J. L.
,
Finol
,
E. A.
,
Ginel
,
A.
, and
Doblare
,
M.
,
2011
, “
FSI Analysis of a Human Trachea Before and After Prosthesis Implantation
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071003
.
18.
Avanzini
,
A.
, and
Battini
,
D.
,
2014
, “
Structural Analysis of a Stented Pericardial Heart Valve With Leaflets Mounted Externally
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
10
), pp.
985
995
.
19.
Maas
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2017
, “
Febio: History and Advances
,”
Annu. Rev. Biomed. Eng.
,
19
, pp.
279
299
.
20.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
21.
Ateshian
,
G. A.
,
Nims
,
R. J.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2014
, “
Computational Modeling of Chemical Reactions and Interstitial Growth and Remodeling Involving Charged Solutes and Solid-Bound Molecules
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1105
1120
.
22.
Nims
,
R. J.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusséaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.
23.
Maas
,
S. A.
,
Erdemir
,
A.
,
Halloran
,
J. P.
, and
Weiss
,
J. A.
,
2016
, “
A General Framework for Application of Prestrain to Computational Models of Biological Materials
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
499
510
.
24.
Ateshian
,
G. A.
,
2015
, “
Viscoelasticity Using Reactive Constrained Solid Mixtures
,”
J. Biomech.
,
48
(
6
), pp.
941
947
.
25.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2013
, “
Multiphasic Finite Element Framework for Modeling Hydrated Mixtures With Multiple Neutral and Charged Solutes
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111001
.
26.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2010
, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061006
.
27.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2012
, “
Solute Transport Across a Contact Interface in Deformable Porous Media
,”
J. Biomech.
,
45
(
6
), pp.
1023
1027
.
28.
Zimmerman
,
B. K.
, and
Ateshian
,
G. A.
,
2018
, “
A Facet-to-Facet Finite Element Algorithm for Large Deformation Frictional Contact in Febio
,”
ASME J. Biomech. Eng.
,
140
(
8
), p.
081013
.
29.
Ateshian
,
G. A.
,
Shim
,
J. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2018
, “
Finite Element Framework for Computational Fluid Dynamics in FEBio
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021001
.
30.
Tian
,
F.-B.
,
Dai
,
H.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2014
, “
Fluid–Structure Interaction Involving Large Deformations: 3D Simulations and Applications to Biological Systems
,”
J. Comput. Phys.
,
258
, pp.
451
469
.
31.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.
32.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.
33.
Hughes
,
T. J.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.
34.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1–3
), pp.
689
723
.
35.
Tezduyar
,
T.
,
1991
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Advances in Applied Mechanics
,
Elsevier
,
San Diego, CA
, pp.
1
44
.
36.
Tezduyar
,
T.
,
Behr
,
M.
,
Mittal
,
S.
, and
Liou
,
J.
,
1992
, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedure—II: Computation of Free-Surface Flows, Two-Liquid Flows, and Flows With Drifting Cylinders
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
353
371
.
37.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
,
2006
, “
Space–Time Finite Element Techniques for Computation of Fluid–Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
17–18
), pp.
2002
2027
.
38.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Hughes
,
T. J. R.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.
39.
Brezzi
,
F.
, and
Bathe
,
K.-J.
,
1990
, “
A Discourse on the Stability Conditions for Mixed Finite Element Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
82
(
1–3
), pp.
27
57
.
40.
Reddy
,
J. N.
, and
Gartling
,
D.
,
2000
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
(Computational Mechanics and Applied Analysis),
2nd ed.
,
CRC Press
,
Boca Raton, FL
41.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.
42.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), p.
371
.
43.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.
44.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
, “
The Classical Field Theories
,”
Encyclopedia of Physics
, Vol.
III/1
,
Springer-Verlag
,
Berlin
.
45.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1969
, “
On Basic Equations for Mixtures
,”
Q. J. Mech. Appl. Math.
,
22
(
4
), pp.
427
438
.
46.
Bowen
,
R. M.
,
1976
, “
Theory of Mixtures
,”
Continuum Physics
, Academic Press, New York.
47.
Bedford
,
A.
, and
Drumheller
,
D. S.
,
1983
, “
Theories of Immiscible and Structured Mixtures
,”
Int. J. Eng. Sci.
,
21
(
8
), pp.
863
960
.
48.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
49.
Oomens
,
C. W.
,
van Campen
,
D. H.
, and
Grootenboer
,
H. J.
,
1987
, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
,
20
(
9
), pp.
877
885
.
50.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
51.
Huyghe
,
J. M.
, and
Janssen
,
J.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.
52.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
109
126
.
53.
Ateshian
,
G. A.
, and
Ricken
,
T.
,
2010
, “
Multigenerational Interstitial Growth of Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
689
702
.
54.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.
55.
Bowen
,
R. M.
,
1982
, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
20
(
6
), pp.
697
735
.
56.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
,
Somerset, NJ
.
57.
Bonet
,
D. J.
, and
Wood
,
D. R. D.
,
2008
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
58.
Bathe
,
K.-J.
, and
Ledezma
,
G. A.
,
2007
, “
Benchmark Problems for Incompressible Fluid Flows With Structural Interactions
,”
Comput. Struct.
,
85
(
11–14
), pp.
628
644
.
59.
Hamrock
,
B. J.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill Companies
,
New York
.
60.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1/3
), pp.
1
48
.
61.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel—Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
62.
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2012
, “
3D Constitutive Modeling of the Biaxial Mechanical Response of Intact and Layer-Dissected Human Carotid Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
116
128
.
63.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.
64.
Moghadam
,
M. E.
,
Bazilevs
,
Y.
,
Hsia
,
T.-Y.
,
Vignon-Clementel
,
I. E.
, and
Marsden
,
A. L.
,
2011
, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.
65.
Alkhouli
,
N.
,
Mansfield
,
J.
,
Green
,
E.
,
Bell
,
J.
,
Knight
,
B.
,
Liversedge
,
N.
,
Tham
,
J. C.
,
Welbourn
,
R.
,
Shore
,
A. C.
,
Kos
,
K.
, and
Winlove
,
C. P.
,
2013
, “
The Mechanical Properties of Human Adipose Tissues and Their Relationships to the Structure and Composition of the Extracellular Matrix
,”
Am. J. Physiol.-Endocrinol. Metab.
,
305
(
12
), pp.
E1427
E1435
.
66.
Gonzalez
,
O.
,
2000
, “
Exact Energy and Momentum Conserving Algorithms for General Models in Nonlinear Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
13–14
), pp.
1763
1783
.
You do not currently have access to this content.