Patients that undergo the arterial switch operation (ASO) to repair transposition of great arteries (TGA) can develop abnormal pulmonary trunk morphology with significant long-term complications. In this study, cardiovascular magnetic resonance was combined with computational fluid dynamics to investigate the impact of the postoperative layout on the pulmonary flow patterns. Three ASO patients were analyzed and compared to a volunteer control. Results showed the presence of anomalous shear layer instabilities, vortical and helical structures, and turbulent-like states in all patients, particularly as a consequence of the unnatural curvature of the pulmonary bifurcation. Streamlined, mostly laminar flow was instead found in the healthy subject. These findings shed light on the correlation between the post-ASO anatomy and the presence of altered flow features, and may be useful to improve surgical planning as well as the long-term care of TGA patients.

References

References
1.
Villafañe
,
J.
,
Lantin-Hermoso
,
M. R.
,
Bhatt
,
A. B.
,
Tweddell
,
J. S.
,
Geva
,
T.
,
Nathan
,
M.
,
Elliott
,
M. J.
,
Vetter
,
V. L.
,
Paridon
,
S. M.
,
Kochilas
,
L.
,
Jenkins
,
K. J.
,
Beekman
,
R. H.
,
Wernovsky
,
G.
, and
Towbin
,
J. A.
,
2014
, “
D-Transposition of the Great Arteries: The Current Era of the Arterial Switch Operation
,”
J. Am. Coll. Cardiol.
,
64
(
5
), pp.
498
511
.
2.
Shaher
,
R. M.
,
1964
, “
Complete and Inverted Transposition of the Great Vessels
,”
Br. Heart J.
,
26
(
1
), p.
51
.
3.
Jatene
,
A.
,
Fontes
,
V.
,
Paulista
,
P.
,
Souza
,
L.
,
Neger
,
F.
,
Galantier
,
M.
, and
Sousa
,
J.
,
1976
, “
Anatomic Correction of Transposition of the Great Vessels
,”
J. Thorac. Cardiovasc. Surg.
,
72
(
3
), pp.
364
370
.https://www.ncbi.nlm.nih.gov/pubmed/957754
4.
Senning
,
Å.
,
1959
, “
Surgical Correction of Transposition of the Great Vessels
,”
Surgery
,
45
(
6
), pp.
966
980
.
5.
Mustard
,
W.
,
1964
, “
Successful Two-Stage Correction of Transposition of the Great Vessels
,”
Surgery
,
55
(
3
), pp.
469
472
.
6.
Fraser
,
C. D.
,
2017
, “
The Neonatal Arterial Switch Operation: Technical Pearls
,”
Semin. Thorac. Cardiovasc. Surg.:Pediatr. Card. Surg. Annu.
,
20
, pp. 38–42. https://www.sciencedirect.com/science/article/pii/S1092912616300278?via%3Dihub
7.
Lecompte
,
Y.
,
Zannini
,
L.
,
Hazan
,
E.
,
Jarreau
,
M.
,
Bex
,
J.
,
Tu
,
T. V.
, and
Neveux
,
J.
,
1981
, “
Anatomic Correction of Transposition of the Great Arteries
,”
J. Thorac. Cardiovasc. Surg.
,
82
(
4
), pp.
629
631
.https://www.ncbi.nlm.nih.gov/pubmed/7278356
8.
Khairy
,
P.
,
Clair
,
M.
,
Fernandes
,
S. M.
,
Blume
,
E. D.
,
Powell
,
A. J.
,
Newburger
,
J. W.
,
Landzberg
,
M. J.
, and
Mayer
,
J. E.
,
2013
, “
Cardiovascular Outcomes After the Arterial Switch Operation for D-Transposition of the Great Arteries
,”
Circulation
,
127
(
3
), pp.
331
339
.
9.
Raju
,
V.
,
Burkhart
,
H. M.
,
Durham
,
L. A.
, III
,
Eidem
,
B. W.
,
Phillips
,
S. D.
,
Li
,
Z.
,
Schaff
,
H. V.
, and
Dearani
,
J. A.
,
2013
, “
Reoperation After Arterial Switch: A 27-Year Experience
,”
Ann. Thorac. Surg.
,
95
(
6
), pp.
2105
2113
.
10.
Gutberlet
,
M.
,
Boeckel
,
T.
,
Hosten
,
N.
,
Vogel
,
M.
,
Kühne
,
T.
,
Oellinger
,
H.
,
Ehrenstein
,
T.
,
Venz
,
S.
,
Hetzer
,
R.
,
Bein
,
G.
, and
Felix
,
R.
,
2000
, “
Arterial Switch Procedure for D-Transposition of the Great Arteries: Quantitative Midterm Evaluation of Hemodynamic Changes With Cine MR Imaging and Phase-Shift Velocity Mapping-Initial Experience
,”
Radiology
,
214
(
2
), pp.
467
475
.
11.
Morgan
,
C. T.
,
Mertens
,
L.
,
Grotenhuis
,
H.
,
Yoo
,
S.-J.
,
Seed
,
M.
, and
Grosse-Wortmann
,
L.
,
2017
, “
Understanding the Mechanism for Branch Pulmonary Artery Stenosis After the Arterial Switch Operation for Transposition of the Great Arteries
,”
Eur. Heart J. Cardiovasc. Imaging
,
18
(
2
), pp.
180
185
.
12.
Ntsinjana
,
H. N.
,
Capelli
,
C.
,
Biglino
,
G.
,
Cook
,
A. C.
,
Tann
,
O.
,
Derrick
,
G.
,
Taylor
,
A. M.
, and
Schievano
,
S.
,
2014
, “
3D Morphometric Analysis of the Arterial Switch Operation Using In Vivo MRI Data
,”
Clin. Anat.
,
27
(
8
), pp.
1212
1222
.
13.
Geiger
,
J.
,
Hirtler
,
D.
,
Bürk
,
J.
,
Stiller
,
B.
,
Arnold
,
R.
,
Jung
,
B.
,
Langer
,
M.
, and
Markl
,
M.
,
2014
, “
Postoperative Pulmonary and Aortic 3D Haemodynamics in Patients After Repair of Transposition of the Great Arteries
,”
Eur. Radiol.
,
24
(
1
), pp.
200
208
.
14.
Massin
,
M.
,
Nitsch
,
G.
,
Däbritz
,
S.
,
Seghaye
,
M.-C.
,
Messmer
,
B.
, and
Von Bernuth
,
G.
,
1998
, “
Growth of Pulmonary Artery After Arterial Switch Operation for Simple Transposition of the Great Arteries
,”
Eur. J. Pediatr.
,
157
(
2
), pp.
95
100
.
15.
Chiu
,
S.
,
Lee
,
M.-L.
,
Huang
,
S.-C.
,
Chang
,
C.-I.
,
Chen
,
Y.-S.
,
Wu
,
M.-H.
, and
Anderson
,
R. H.
,
2016
, “
The Concept of the Arch Window in the Spiral Switch of the Great Arteries
,”
Pediatr. Cardiol.
,
37
(
6
), pp.
1153
1161
.
16.
Riesenkampff
,
E.
,
Nordmeyer
,
S.
,
Al-Wakeel
,
N.
,
Kropf
,
S.
,
Kutty
,
S.
,
Berger
,
F.
, and
Kuehne
,
T.
,
2014
, “
Flow-Sensitive Four-Dimensional Velocity-Encoded Magnetic Resonance Imaging Reveals Abnormal Blood Flow Patterns in the Aorta and Pulmonary Trunk of Patients With Transposition
,”
Cardiol. Young
,
24
(
1
), pp.
47
53
.
17.
Markl
,
M.
,
Kilner
,
P. J.
, and
Ebbers
,
T.
,
2011
, “
Comprehensive 4D Velocity Mapping of the Heart and Great Vessels by Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
13
(
1
), p.
7
.
18.
Sievers
,
H.-H.
,
Putman
,
L. M.
,
Kheradvar
,
A.
,
Gabbert
,
D.
,
Wegner
,
P.
,
Scheewe
,
J.
,
Salehi-Ravesh
,
M.
,
Kramer
,
H.-H.
, and
Rickers
,
C.
,
2016
, “
4D Flow Streamline Characteristics of the Great Arteries Twenty Years After Lecompte and Direct Spiral Arterial Switch Operation (DSASO) in Simple TGA
,”
Global Cardiol. Sci. Pract.
,
2016
(
3
), p.
e201629
.
19.
Tang
,
T.
,
Chiu
,
S.
,
Chen
,
H.-C.
,
Cheng
,
K.-Y.
, and
Chen
,
S.-J.
,
2001
, “
Comparison of Pulmonary Arterial Flow Phenomena in Spiral and Lecompte Models by Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
,
122
(
3
), pp.
529
534
.
20.
Rickers
,
C.
,
Kheradvar
,
A.
,
Sievers
,
H.-H.
,
Falahatpisheh
,
A.
,
Wegner
,
P.
,
Gabbert
,
D.
,
Jerosch-Herold
,
M.
,
Hart
,
C.
,
Voges
,
I.
,
Putman
,
L. M.
,
Kristo
,
I.
,
Fischer
,
G.
,
Scheewe
,
J.
, and
Kramer
,
H.-H.
,
2016
, “
Is the Lecompte Technique the Last Word on Transposition of the Great Arteries Repair for All Patients? A Magnetic Resonance Imaging Study Including a Spiral Technique Two Decades Postoperatively
,”
Interact. Cardiovasc. Thorac. Surg.
,
22
(
6
), pp.
817
825
.
21.
Morris
,
P. D.
,
Narracott
,
A.
,
von Tengg-Kobligk
,
H.
,
Silva Soto
,
D. A.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evans
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.
22.
Zhong
,
L.
,
Zhang
,
J.-M.
,
Su
,
B.
,
San Tan
,
R.
,
Allen
,
J. C.
, and
Kassab
,
G. S.
,
2018
, “
Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities
,”
Front. Physiol.
,
9
, p.
742
.
23.
Henk
,
C. B.
,
Schlechta
,
B.
,
Grampp
,
S.
,
Gomischek
,
G.
,
Klepetko
,
W.
, and
Mostbeck
,
G. H.
,
1998
, “
Pulmonary and Aortic Blood Flow Measurements in Normal Subjects and Patients After Single Lung Transplantation at 0.5 T Using Velocity Encoded Cine MRI
,”
Chest
,
114
(
3
), pp.
771
779
.
24.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
Simvascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.
25.
Kung
,
E. O.
,
Les
,
A. S.
,
Figueroa
,
C. A.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.
26.
Kung
,
E.
,
Kahn
,
A. M.
,
Burns
,
J. C.
, and
Marsden
,
A.
,
2014
, “
In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease
,”
Cardiovasc. Eng. Technol.
,
5
(
2
), pp.
189
201
.
27.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.
28.
Moghadam
,
M. E.
,
Bazilevs
,
Y.
,
Hsia
,
T.-Y.
,
Vignon-Clementel
,
I. E.
, and
Marsden
,
A. L.
,
2011
, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.
29.
Schiavazzi
,
D. E.
,
Kung
,
E. O.
,
Marsden
,
A. L.
,
Baker
,
C.
,
Pennati
,
G.
,
Hsia
,
T.-Y.
,
Hlavacek
,
A.
, and
Dorfman
,
A. L.
,
Modeling of Congenital Hearts Alliance (MOCHA) Investigators
,
2015
, “
Hemodynamic Effects of Left Pulmonary Artery Stenosis After Superior Cavopulmonary Connection: A Patient-Specific Multiscale Modeling Study
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
3
), pp.
689
696
.
30.
Tang
,
B. T.
,
Fonte
,
T. A.
,
Chan
,
F. P.
,
Tsao
,
P. S.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2011
, “
Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
347
358
.
31.
Morgan
,
V. L.
,
Roselli
,
R. J.
, and
Lorenz
,
C. H.
,
1998
, “
Normal Three-Dimensional Pulmonary Artery Flow Determined by Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
26
(
4
), pp.
557
566
.
32.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.
33.
Yang
,
W.
,
Feinstein
,
J. A.
, and
Vignon-Clementel
,
I. E.
,
2016
, “
Adaptive Outflow Boundary Conditions Improve Post-Operative Predictions After Repair of Peripheral Pulmonary Artery Stenosis
,”
Biomech. Model. Mechanobiol.
,
15
(
5
), pp.
1345
1353
.
34.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Technical Report, Center for Turbulence Research, Stanford, CA, Report No. CTR-S88.
35.
Dean
,
W.
,
1928
, “
The Stream-Line Motion of Fluid in a Curved Pipe
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
5
(
30
), pp.
673
695
.
36.
Berger
,
S.
,
Talbot
,
L.
, and
Yao
,
L.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
461
512
.
37.
Kühnen
,
J.
,
Braunshier
,
P.
,
Schwegel
,
M.
,
Kuhlmann
,
H.
, and
Hof
,
B.
,
2015
, “
Subcritical Versus Supercritical Transition to Turbulence in Curved Pipes
,”
J. Fluid Mech.
,
770
, p. R3.https://doi.org/10.1017/jfm.2015.184
38.
Vester
,
A. K.
,
Örlü
,
R.
, and
Alfredsson
,
P. H.
,
2016
, “
Turbulent Flows in Curved Pipes: Recent Advances in Experiments and Simulations
,”
ASME Appl. Mech. Rev.
,
68
(
5
), p.
050802
.
39.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.
40.
Chern
,
M.-J.
,
Wu
,
M.-T.
, and
Her
,
S.-W.
,
2012
, “
Numerical Study for Blood Flow in Pulmonary Arteries After Repair of Tetralogy of Fallot
,”
Comput. Math. Methods Med.
,
2012
, p. 198108.http://dx.doi.org/10.1155/2012/198108
41.
Chern
,
M.-J.
,
Wu
,
M.-T.
, and
Wang
,
H.-L.
,
2008
, “
Numerical Investigation of Regurgitation Phenomena in Pulmonary Arteries of Tetralogy of Fallot Patients After Repair
,”
J. Biomech.
,
41
(
14
), pp.
3002
3009
.
42.
Zhang
,
W.
,
Liu
,
J.
,
Yan
,
Q.
,
Liu
,
J.
,
Hong
,
H.
, and
Mao
,
L.
,
2016
, “
Computational Haemodynamic Analysis of Left Pulmonary Artery Angulation Effects on Pulmonary Blood Flow
,”
Interact. Cardiovasc. Thorac. Surg.
,
23
(
4
), pp.
519
525
.
43.
Hanna
,
B. D.
,
2005
, “
Blood Flow in Normal and Diseased Pulmonary Arteries
,” Ventricular Function and Blood Flow in Congenital Heart Disease, M. A. Fogel, ed., Wiley-Blackwell, Hoboken, NJ, pp.
275
285
.
44.
Zhong
,
L.
,
Su
,
Y.
,
Yeo
,
S.-Y.
,
Tan
,
R.-S.
,
Ghista
,
D. N.
, and
Kassab
,
G.
,
2009
, “
Left Ventricular Regional Wall Curvedness and Wall Stress in Patients With Ischemic Dilated Cardiomyopathy
,”
Am. J. Physiol. Heart Circ. Physiol.
,
296
(
3
), pp.
H573
H584
.
45.
Bruse
,
J. L.
,
Khushnood
,
A.
,
McLeod
,
K.
,
Biglino
,
G.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Taylor
,
A. M.
,
Hsia
,
T.-Y.
,
Schievano
,
S.
,
Taylor
,
A. M.
,
Khambadkone
,
S.
,
Schievano
,
S.
,
de Leval
,
M.
,
Hsia
,
T.-Y.
,
Bove
,
E.
,
Dorfman
,
A.
,
Baker
,
G. H.
,
Hlavacek
,
A.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Marsden
,
A.
,
Vignon-Clementel
,
I.
, and
Figliola
,
R.
,
2017
, “
How Successful Is Successful? Aortic Arch Shape After Successful Aortic Coarctation Repair Correlates With Left Ventricular Function
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
2
), pp.
418
427
.
46.
Lee
,
S. E.
,
Lee
,
S.-W.
,
Fischer
,
P. F.
,
Bassiouny
,
H. S.
, and
Loth
,
F.
,
2008
, “
Direct Numerical Simulation of Transitional Flow in a Stenosed Carotid Bifurcation
,”
J. Biomech.
,
41
(
11
), pp.
2551
2561
.
47.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
,
2007
, “
Direct Numerical Simulation of Stenotic Flows—Part 2: Pulsatile Flow
,”
J. Fluid Mech.
,
582
, pp.
281
318
.
48.
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2015
, “
Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
3
15
.
49.
Ku
,
J. P.
,
Draney
,
M. T.
,
Arko
,
F. R.
,
Lee
,
W. A.
,
Chan
,
F. P.
,
Pelc
,
N. J.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
,
2002
, “
In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
743
752
.
50.
Bächler
,
P.
,
Pinochet
,
N.
,
Sotelo
,
J.
,
Crelier
,
G.
,
Irarrazaval
,
P.
,
Tejos
,
C.
, and
Uribe
,
S.
,
2013
, “
Assessment of Normal Flow Patterns in the Pulmonary Circulation by Using 4D Magnetic Resonance Velocity Mapping
,”
Magn. Resonance Imaging
,
31
(
2
), pp.
178
188
.
51.
Chiu
,
I.-S.
,
Huang
,
S.-C.
,
Chen
,
Y.-S.
,
Chang
,
C.-I.
,
Lee
,
M.-L.
,
Chen
,
S.-J.
,
Chen
,
M.-R.
, and
Wu
,
M.-H.
,
2010
, “
Restoring the Spiral Flow of Nature in Transposed Great Arteries
,”
Eur. J. Cardio-Thorac. Surg.
,
37
(
6
), pp.
1239
1245
.
52.
Kheyfets
,
V. O.
,
O'Dell
,
W.
,
Smith
,
T.
,
Reilly
,
J. J.
, and
Finol
,
E. A.
,
2013
, “
Considerations for Numerical Modeling of the Pulmonary Circulation—A Review With a Focus on Pulmonary Hypertension
,”
ASME J. Biomech. Eng.
,
135
(
6
), p.
061011
.
53.
Zambrano
,
B. A.
,
McLean
,
N. A.
,
Zhao
,
X.
,
Tan
,
J.-L.
,
Zhong
,
L.
,
Figueroa
,
C. A.
,
Lee
,
L. C.
, and
Baek
,
S.
,
2018
, “
Image-Based Computational Assessment of Vascular Wall Mechanics and Hemodynamics in Pulmonary Arterial Hypertension Patients
,”
J. Biomech.
,
68
, pp.
84
92
.
54.
Perktold
,
K.
, and
Rappitsch
,
G.
,
1995
, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
,
28
(
7
), pp.
845
856
.
You do not currently have access to this content.