Degenerative wear to the glenoid from repetitive loading can reduce effective concavity depth and lead to future instability. Workspace design should consider glenohumeral stability to prevent initial wear. While glenohumeral stability has been previously explored for activities of daily living including push–pull tasks, whether stability is spatially dependent is unexplored. We simulated bimanual and unimanual push–pull tasks to four horizontal targets (planes of elevation: 0 deg, 45 deg, 90 deg, and 135 deg) at 90 deg thoracohumeral elevation and three elevation targets (thoracohumeral elevations: 20 deg, 90 deg, 170 deg) at 90 deg plane of elevation. The 45 deg horizontal target was most stable regardless of exertion type and would be the ideal target placement when considering stability. This target is likely more stable because the applied load acts perpendicular to the glenoid, limiting shear force production. The 135 deg horizontal target was particularly unstable for unimanual pushing (143% less stable than the 45 deg target), and the applied force for this task acts parallel to the glenoid, likely creating shear forces or limiting compressive forces. Pushing was less stable than pulling (all targets except sagittal 170 deg for both task types and horizontal 45 deg for bimanual) (p < 0.01), which is consistent with prior reports. For example, unimanual pushing at the 90 deg horizontal target was 197% less stable than unimanual pulling. There were limited stability benefits to task placement for pushing, and larger stability benefits may be seen from converting tasks from push to pull rather than optimizing task layout. There was no difference in stability between bimanual and unimanual tasks, suggesting no stability benefit to bimanual operation.

References

References
1.
Steenbrink
,
F.
,
de Groot
,
J. H.
,
Veeger
,
H. E. J.
,
van der Helm
,
F. C. T.
, and
Rozing
,
P. M.
,
2009
, “
Glenohumeral Stability in Simulated Rotator Cuff Tears
,”
J. Mech.
,
42
(
11
), pp.
1740
1745
.
2.
van Drongelen
,
S.
,
Schlüssel
,
M.
,
Arnet
,
U.
, and
Veeger
,
D.
,
2013
, “
The Influence of Simulated Rotator Cuff Tears on the Risk for Impingement in Handbike and Handrim Wheelchair Propulsion
,”
Clin. Mech.
,
28
(
5
), pp.
495
501
.
3.
Lazarus
,
M. D.
,
Sidles
,
J. A.
,
Harryman
,
D. T.
, and
Matsen
,
F. A.
, II
,
1996
, “
Effect of a Chondral-Labral Defect on Glenoid Concavity and Glenohumeral Stability. A Cadaveric Model
,”
J. Bone Jt. Surg.
,
78
(
1
), pp.
94
102
.
4.
Lippitt
,
S. B.
, and
Matsen
,
F.
,
1993
, “
Mechanisms of Glenohumeral Joint Stability
,”
Clin. Orthop. Relat. Res.
,
291
, pp.
20
28
.
5.
Marchi
,
J.
,
Blana
,
D.
, and
Chadwick
,
E. K.
,
2014
, “
Glenohumeral Stability During a Hand-Positioning Task in Previously Injured Shoulders
,”
Med. Biol. Eng. Comput.
,
52
(
3
), pp.
251
256
.
6.
Rowe
,
C. R.
,
Patel
,
D.
, and
Southmayd
,
W. W.
,
1978
, “
The Bankart Procedure: A Long-Term End-Result Study
,”
J. Bone Jt. Surg.
,
60
(
1
), pp.
1
16
.
7.
Lind
,
C. M.
,
2018
, “
Pushing and Pulling: An Assessment Tool for Occupational Health and Safety Practitioners
,”
Int. J. Occup. Saf. Ergon.
,
24
(
1
), pp.
14
26
.
8.
Baril-Gingras
,
G.
, and
Lortie
,
M.
,
1995
, “
The Handling of Objects Other Than Boxes: Univariate Analysis of Handling Techniques in a Large Transport Company
,”
Ergonomics
,
38
(
5
), pp.
905
925
.
9.
McDonald
,
A.
,
Picco
,
B. R.
,
Belbeck
,
A. L.
,
Chow
,
A. Y.
, and
Dickerson
,
C. R.
,
2012
, “
Spatial Dependency of Shoulder Muscle Demands in Horizontal Pushing and Pulling
,”
Appl. Ergon.
,
43
(
6
), pp.
971
978
.
10.
McFarland
,
D. C.
,
Poppo
,
M. N.
,
McCain
,
E. M.
, and
Saul
,
K. R.
,
2018
, “
Spatial Dependency of Shoulder Muscle Demand During Dynamic Unimanual and Bimanual Pushing and Pulling
,”
Appl. Ergon.
,
73
, pp.
199
205
.
11.
Nimbarte
,
A. D.
,
Sun
,
Y.
,
Jaridi
,
M.
, and
Hsiao
,
H.
,
2013
, “
Biomechanical Loading of the Shoulder Complex and Lumbosacral Joints During Dynamic Cart Pushing Task
,”
Appl. Ergon.
,
44
(
5
), pp.
841
849
.
12.
Vidt
,
M. E.
,
Santago
,
A. C.
,
Marsh
,
A. P.
,
Hegedus
,
E. J.
,
Tuohy
,
C. J.
,
Poehling
,
G. G.
,
Freehill
,
M. T.
,
Miller
,
M. E.
, and
Saul
,
K. R.
,
2018
, “
Modeling a Rotator Cuff Tear: Individualized Shoulder Muscle Forces Influence Glenohumeral Joint Contact Force Predictions
,”
Clin. Mech.
,
60
, pp.
20
29
.
13.
Klemt
,
C.
,
Prinold
,
J. A.
,
Morgans
,
S.
,
Smith
,
S. H. L.
,
Nolte
,
D.
,
Reilly
,
P.
, and
Bull
,
A. M. J.
,
2018
, “
Analysis of Shoulder Compressive and Shear Forces During Functional Activities of Daily Life
,”
Clin. Mech.
,
54
, pp.
34
41
.
14.
Das
,
B.
, and
Sengupta
,
A. K.
,
1996
, “
Industrial Workstation Design: A Systematic Ergonomics Approach
,”
Appl. Ergon.
,
27
(
3
), pp.
157
163
.
15.
Holzbaur
,
K. R. S.
,
Delp
,
S. L.
,
Gold
,
G. E.
, and
Murray
,
W. M.
,
2007
, “
Moment-Generating Capacity of Upper Limb Muscles in Healthy Adults
,”
J. Mech.
,
40
(
11
), pp.
2442
2449
.
16.
Cram
,
J. R.
, and
Criswell
,
E.
,
2011
,
Cram's Introduction to Surface Electromyography
,
Jones and Bartlett
,
Sudbury, MA
.
17.
Vidt
,
M. E.
,
Santago
,
A. C.
,
Marsh
,
A. P.
,
Hegedus
,
E. J.
,
Tuohy
,
C. J.
,
Poehling
,
G. G.
,
Freehill
,
M. T.
,
Miller
,
M. E.
, and
Saul
,
K. R.
,
2016
, “
The Effects of a Rotator Cuff Tear on Activities of Daily Living in Older Adults: A Kinematic Analysis
,”
J. Mech.
,
49
(
4
), pp.
611
617
.
18.
Saul
,
K. R.
,
Hu
,
X.
,
Goehler
,
C. M.
,
Vidt
,
M. E.
,
Daly
,
M.
,
Velisar
,
A.
, and
Murray
,
W. M.
,
2015
, “
Benchmarking of Dynamic Simulation Predictions in Two Software Platforms Using an Upper Limb Musculoskeletal Model
,”
Comput. Methods Mech. Biomed. Eng.
,
18
(
13
), pp.
1445
1458
.
19.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Bio-Med. Eng.
,
54
(
11
), pp.
1940
1950
.
20.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Mech.
,
38
(
5
), pp.
981
992
.https://www.sciencedirect.com/science/article/pii/S002192900400301X?via%3Dihub
21.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.
22.
Binder-Markey
,
B. I.
, and
Murray
,
W. M.
,
2017
, “
Incorporating the Length-Dependent Passive-Force Generating Muscle Properties of the Extrinsic Finger Muscles Into a Wrist and Finger Biomechanical Musculoskeletal Model
,”
J. Mech.
,
61
, pp.
250
257
.
23.
Yang
,
C.
,
Goto
,
A.
,
Sahara
,
W.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2010
, “
In Vivo Three-Dimensional Evaluation of the Functional Length of Glenohumeral Ligaments
,”
Clin. Mech.
,
25
(
2
), pp.
137
141
.
24.
Boardman
,
N. D.
,
Debski
,
R. E.
,
Warner
,
J. J. P.
,
Taskiran
,
E.
,
Maddox
,
L.
,
Imhoff
,
A. B.
,
Fu
,
F. H.
, and
Woo
,
S. L.-Y.
,
1996
, “
Tensile Properties of the Superior Glenohumeral and Coracohumeral Ligaments
,”
J. Shoulder Elbow Surg.
,
5
(
4
), pp.
249
254
.
25.
Bigliani
,
L. U.
,
Pollock
,
R. G.
,
Soslowsky
,
L. J.
,
Flatow
,
E. L.
,
Pawluk
,
R. J.
, and
Mow
,
V. C.
,
1992
, “
Tensile Properties of the Inferior Glenohumeral Ligament
,”
J. Orthop. Res.
,
10
(
2
), pp.
187
197
.
26.
Daly
,
M.
,
Vidt
,
M. E.
,
Eggebeen
,
J. D.
,
Simpson
,
W. G.
,
Miller
,
M. E.
,
Marsh
,
A. P.
, and
Saul
,
K. R.
,
2013
, “
Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults
,”
J. Aging Phys. Act.
,
21
(
2
), pp.
186
207
.
27.
Holzbaur
,
K. R. S.
,
Murray
,
W. M.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Upper Limb Muscle Volumes in Adult Subjects
,”
J. Mech.
,
40
(
4
), pp.
742
749
.
28.
Saul
,
K. R.
,
Vidt
,
M. E.
,
Gold
,
G. E.
, and
Murray
,
W. M.
,
2015
, “
Upper Limb Strength and Muscle Volume in Healthy Middle-Aged Adults
,”
ASME J. Appl. Mech.
,
31
(
6
), pp.
484
491
.
29.
Vidt
,
M. E.
,
Daly
,
M.
,
Miller
,
M. E.
,
Davis
,
C. C.
,
Marsh
,
A. P.
, and
Saul
,
K. R.
,
2012
, “
Characterizing Upper Limb Muscle Volume and Strength in Older Adults: A Comparison With Young Adults
,”
J. Mech.
,
45
(
2
), pp.
334
341
.
30.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Mech.
,
36
(
3
), pp.
321
328
.https://www.sciencedirect.com/science/article/pii/S0021929002004323?via%3Dihub
31.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Mech.
,
39
(
6
), pp.
1107
1115
.
32.
Chadwick
,
E. K.
,
Blana
,
D.
,
van den Bogert
,
A. J. T.
, and
Kirsch
,
R. F.
,
2009
, “
A Real-Time, 3-D Musculoskeletal Model for Dynamic Simulation of Arm Movements
,”
IEEE Trans. Bio-Med. Eng.
,
56
(
4
), pp.
941
948
.
33.
Dickerson
,
C. R.
,
Chaffin
,
D. B.
, and
Hughes
,
R. E.
,
2007
, “
A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis
,”
Comput. Methods Mech. Biomed. Eng.
,
10
(
6
), pp.
389
400
.
34.
van der Helm
,
F.
,
1994
, “
A Finite Element Musculoskeletal Model of the Shoulder Mechanism
,”
J. Mech.
,
27
(
5
), pp.
551
569
.https://www.sciencedirect.com/science/article/pii/0021929094900655?via%3Dihub
35.
Halder
,
A. M.
,
Kuhl
,
S. G.
, and
Zobitz
,
M. E.
,
2001
, “
Effects of the Glenoid Labrum and Glenohumeral Abduction on Stability of the Shoulder Joint Through Concavity-Compression: An In Vivo Study
,”
J. Bone Jt. Surg.
,
83-A
(
7
), pp.
1062
1069
.https://insights.ovid.com/pubmed?pmid=11451977
36.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.
37.
Blache
,
Y.
,
Begon
,
M.
,
Michaud
,
B.
,
Desmoulins
,
L.
,
Allard
,
P.
, and
Dal Maso
,
F.
,
2017
, “
Muscle Function in Glenohumeral Joint Stability During Lifting Task
,”
PLoS One
,
12
(
12
), p.
e0189406
.
38.
Harryman
,
D. T.
,
Sidles
,
J. A.
,
Clark
,
J. M.
,
McQuade
,
K. J.
,
Gibb
,
T. D.
, and
Matsen
,
F. A.
,
1990
, “
Translation of the Humeral Head on the Glenoid With Passive Glenohumeral Motion
,”
J. Bone Jt. Surg.
,
72
(
9
), pp.
1334
1343
.
39.
Terry
,
G. C.
,
Hammon
,
D.
,
France
,
P.
, and
Norwood
,
L. A.
,
1991
, “
The Stabilizing Function of Passive Shoulder Restraints
,”
Am. J. Sports Med.
,
19
(
1
), pp.
26
34
.
40.
Lippitt
,
S. B.
,
Vanderhooft
,
J. E.
,
Harris
,
S. L.
,
Sidles
,
J. A.
,
Harryman
,
D. T.
, and
Matsen
,
F. A.
,
1993
, “
Glenohumeral Stability From Concavity-Compression: A Quantitative Analysis
,”
J. Shoulder Elbow Surg.
,
2
(
1
), pp.
27
35
.
41.
Cereatti
,
A.
,
Calderone
,
M.
,
Buckland
,
D. M.
,
Buettner
,
A.
,
Della Croce
,
U.
, and
Rosso
,
C.
,
2014
, “
In Vivo Glenohumeral Translation Under Anterior Loading in an Open-MRI Set-Up
,”
J. Mech.
,
47
(
15
), pp.
3771
3775
.
42.
Meszaros
,
K. A.
,
Vidt
,
M. E.
, and
Dickerson
,
C. R.
,
2018
, “
The Effects of Hand Force Variation on Shoulder Muscle Activation During Submaximal Exertions
,”
Int. J. Occup. Saf. Ergon.
,
24
(
1
), pp.
100
110
.
43.
Hawkes
,
D. H.
,
Alizadehkhaiyat
,
O.
,
Kemp
,
G. J.
,
Fisher
,
A. C.
,
Roebuck
,
M. M.
, and
Frostick
,
S. P.
,
2012
, “
Shoulder Muscle Activation and Coordination in Patients With a Massive Rotator Cuff Tear: An Electromyographic Study
,”
J. Orthop. Res.
,
30
(
7
), pp.
1140
1146
.
44.
Minagawa
,
H.
,
Yamamoto
,
N.
,
Abe
,
H.
,
Fukuda
,
M.
,
Seki
,
N.
,
Kikuchi
,
K.
,
Kijima
,
H.
, and
Itoi
,
E.
,
2013
, “
Prevalence of Symptomatic and Asymptomatic Rotator Cuff Tears in the General Population: From Mass-Screening in One Village
,”
J. Orthop.
,
10
(
1
), pp.
8
12
.
45.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Mech. Biomed. Eng.
,
4
(
2
), pp.
93
126
.
46.
Otis
,
J. C.
,
Warren
,
R. F.
,
Backus
,
S. I.
,
Santner
,
T. J.
, and
Mabrey
,
J. D.
,
1990
, “
Torque Production in the Shoulder of the Normal Young Adult Male. The Interaction of Function, Dominance, Joint Angle, and Angular Velocity
,”
Am. J. Sports Med.
,
18
(
2
), pp.
119
123
.
You do not currently have access to this content.