Aging and degeneration of the intervertebral disk are noted by changes in tissue composition and geometry, including a decrease in nucleus pulposus (NP) area. The NP centroid is positioned slightly posterior of the disk's centroid, but the effect of NP size and location on disk joint mechanics is not well understood. We evaluated the effect of NP size and centroid location on disk joint mechanics under dual-loading modalities (i.e., compression in combination with axial rotation or bending). A finite element model (FEM) was developed to vary the relative NP area (NP:Disk area ratio range = 0.21–0.60). We also evaluated the effect of NP position by shifting the NP centroid anteriorly and posteriorly. Our results showed that compressive stiffness and average first principal strains increased with NP size. Under axial compression, stresses are distributed from the NP to the annulus, and stresses were redistributed toward the NP with axial rotation. Moreover, peak stresses were greater for disks with a smaller NP area. NP centroid location had a greater impact on intradiscal pressure during flexion and extension, where peak pressures in the posterior annulus under extension was greater for disks with a more posteriorly situated NP. In conclusion, the findings from this study highlight the importance of closely mimicking NP size and location in computational models that aim to understand stress/strain distribution during complex loading and for developing repair strategies that aim to recapitulate the mechanical behavior of healthy disks.

References

References
1.
NIH-NINDS
,
2014
, “
Low Back Pain Fact Sheet
,” NIH Publication, accessed Mar. 5, 2018, https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Low-Back-Pain-Fact-Sheet
2.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.
3.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling Are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
493
503
.
4.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
5.
Fennell
,
A. J.
,
Jones
,
A. P.
, and
Hukins
,
D. W.
,
1996
, “
Migration of the Nucleus Pulposus Within the Intervertebral Disc During Flexion and Extension of the Spine
,”
Spine
,
21
(
23
), pp.
2753
2757
.
6.
O'Connell
,
G. D.
,
Leach
,
J. K.
, and
Klineberg
,
E. O.
,
2015
, “
Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation
,”
BioRes. Open Access
,
4
(
1
), pp.
431
445
.
7.
Sato
,
K.
,
Kikuchi
,
S.
, and
Yonezawa
,
T.
,
1999
, “
In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems
,”
Spine
,
24
(
23
), pp.
2468
2474
.
8.
Adams
,
M. A.
,
Burton
,
K.
, and
Bogduk
,
N.
,
2006
,
The Biomechanics of Back Pain
,
Churchill Livingstone/Elsevier Health Sciences
, London.
9.
Adams
,
M. A.
, and
Roughley
,
P. J.
,
2006
, “
What Is Intervertebral Disc Degeneration, and What Causes It?
,”
Spine
,
31
(
18
), pp.
2151
2161
.
10.
Buckwalter
,
J. A.
,
1995
, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
,
20
(
11
), pp.
1307
1314
.
11.
Costi
,
J. J.
,
Stokes
,
I. A.
,
Gardner-Morse
,
M.
,
Laible
,
J.
,
Scoffone
,
H. M.
, and
Iatridis
,
J.
,
2007
, “
Direct Measurement of Intervertebral Disc Maximum Shear Strain in Six Degrees of Freedom: Motions That Place Disc Tissue at Risk of Injury
,”
J. Biomech.
,
40
(
11
), pp.
2457
2466
.
12.
O'connell
,
G. D.
,
Johannessen
,
W.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Human Internal Disc Strains in Axial Compression Measured Noninvasively Using Magnetic Resonance Imaging
,”
Spine
,
32
(
25
), pp.
2860
2868
.
13.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Human Intervertebral Disc Internal Strain in Compression: The Effect of Disc Region, Loading Position, and Degeneration
,”
J. Orthop. Res.
,
29
(
4
), pp.
547
555
.
14.
Yoder
,
J. H.
,
Peloquin
,
J. M.
,
Song
,
G.
,
Tustison
,
N. J.
,
Moon
,
S. M.
,
Wright
,
A. C.
,
Vresilovic
,
E. J.
,
Gee
,
J. C.
, and
Elliott
,
D. M.
,
2014
, “
Internal Three-Dimensional Strains in Human Intervertebral Discs Under Axial Compression Quantified Noninvasively by Magnetic Resonance Imaging and Image Registration
,”
ASME J. Biomech. Eng.
,
136
(
11
), p.
111008
.
15.
Schmidt
,
H.
,
Galbusera
,
F.
,
Rohlmann
,
A.
, and
Shirazi-Adl
,
A.
,
2013
, “
What Have we Learned From Finite Element Model Studies of Lumbar Intervertebral Discs in the Past Four Decades?
,”
J. Biomech.
,
46
(
14
), pp.
2342
2355
.
16.
Adam
,
C.
,
Rouch
,
P.
, and
Skalli
,
W.
,
2015
, “
Inter-Lamellar Shear Resistance Confers Compressive Stiffness in the Intervertebral Disc: An Image-Based Modelling Study on the Bovine Caudal Disc
,”
J. Biomech.
,
48
(
16
), pp.
4303
4308
.
17.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H.-J.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.
18.
Schmidt
,
H.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
The Risk of Disc Prolapses With Complex Loading in Different Degrees of Disc Degeneration—A Finite Element Analysis
,”
Clin. Biomech.
,
22
(
9
), pp.
988
998
.
19.
Yang
,
B.
, and
O'Connell
,
G. D.
,
2017
, “
Effect of Collagen Fibre Orientation on Intervertebral Disc Torsion Mechanics
,”
Biomech. Model. Mechanobiol.
,
16
(
6
), pp.
2005
2015
.
20.
Niemeyer
,
F.
,
Wilke
,
H.-J.
, and
Schmidt
,
H.
,
2012
, “
Geometry Strongly Influences the Response of Numerical Models of the Lumbar Spine—A Probabilistic Finite Element Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1414
1423
.
21.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
,
Kiapour
,
A.
,
Kim
,
Y. H.
,
Labus
,
K. M.
,
Little
,
J. P.
,
Park
,
W. M.
,
Wang
,
Y. H.
,
Wilke
,
H. J.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.
22.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Peloquin
,
J. M.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Validation and Application of an Intervertebral Disc Finite Element Model Utilizing Independently Constructed Tissue-Level Constitutive Formulations That Are Nonlinear, Anisotropic, and Time-Dependent
,”
J. Biomech.
,
47
(
11
), pp.
2540
2546
.
23.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2006
, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech.
,
21
(
4
), pp.
337
344
.
24.
Shirazi-Adl
,
A.
,
Ahmed
,
A.
, and
Shrivastava
,
S.
,
1986
, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
(
4
), pp.
331
350
.
25.
Mengoni
,
M.
,
Kayode
,
O.
,
Sikora
,
S. N.
,
Zapata-Cornelio
,
F. Y.
,
Gregory
,
D. E.
, and
Wilcox
,
R. K.
,
2017
, “
Annulus Fibrosus Functional Extrafibrillar and Fibrous Mechanical Behaviour: Experimental and Computational Characterisation
,”
R. Soc. Open Sci.
,
4
(
8
), p.
170807
.
26.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine
,
32
(
3
), pp.
328
333
.
27.
Showalter
,
B. L.
,
Beckstein
,
J. C.
,
Martin
,
J. T.
,
Beattie
,
E. E.
,
Orías
,
A. A. E.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2012
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content
,”
Spine
,
37
(
15
), p.
E900–E907
.
28.
Zhong
,
W.
,
Driscoll
,
S. J.
,
Wu
,
M.
,
Wang
,
S.
,
Liu
,
Z.
,
Cha
,
T. D.
,
Wood
,
K. B.
, and
Li
,
G.
,
2014
, “
In Vivo Morphological Features of Human Lumbar Discs
,”
Medicine
,
93
(
28
), pp. 1–5.
29.
Gullbrand
,
S. E.
,
Kim
,
D. H.
,
Bonnevie
,
E.
,
Ashinsky
,
B. G.
,
Smith
,
L. J.
,
Elliott
,
D. M.
,
Mauck
,
R. L.
, and
Smith
,
H. E.
,
2018
, “
Towards the Scale Up of Tissue Engineered Intervertebral Discs for Clinical Application
,”
Acta Biomater.
,
70
, pp.
154
164
.
30.
Martin
,
J.
,
Gullbrand
,
S.
,
Kim
,
D.
,
Ikuta
,
K.
,
Pfeifer
,
C.
,
Ashinsky
,
B.
,
Smith
,
L.
,
Elliott
,
D.
,
Smith
,
H.
, and
Mauck
,
R.
,
2017
, “
In Vitro Maturation and in Vivo Integration and Function of an Engineered Cell-Seeded Disc-Like Angle Ply Structure (DAPS) for Total Disc Arthroplasty
,”
Sci. Rep.
,
7
, p. 15765.
31.
Tanaka
,
N.
,
An
,
H. S.
,
Lim
,
T.-H.
,
Fujiwara
,
A.
,
Jeon
,
C.-H.
, and
Haughton
,
V. M.
,
2001
, “
The Relationship Between Disc Degeneration and Flexibility of the Lumbar Spine
,”
Spine J.
,
1
(
1
), pp.
47
56
.
32.
Peloquin
,
J. M.
,
Yoder
,
J. H.
,
Jacobs
,
N. T.
,
Moon
,
S. M.
,
Wright
,
A. C.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Human L3L4 Intervertebral Disc Mean 3D Shape, Modes of Variation, and Their Relationship to Degeneration
,”
J. Biomech.
,
47
(
10
), pp.
2452
2459
.
33.
Cassidy
,
J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.
34.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
(
5
), pp.
402
410
.
35.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
36.
Moon
,
S. M.
,
Yoder
,
J. H.
,
Wright
,
A. C.
,
Smith
,
L. J.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Evaluation of Intervertebral Disc Cartilaginous Endplate Structure Using Magnetic Resonance Imaging
,”
Eur. Spine J.
,
22
(
8
), pp.
1820
1828
.
37.
Rodriguez
,
A. G.
,
Rodriguez‐Soto
,
A. E.
,
Burghardt
,
A. J.
,
Berven
,
S.
,
Majumdar
,
S.
, and
Lotz
,
J. C.
,
2012
, “
Morphology of the Human Vertebral Endplate
,”
J. Orthop. Res.
,
30
(
2
), pp.
280
287
.
38.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Latridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.
39.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
40.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Axial Compression Mechanics and Glycosaminoglycan Content
,”
Spine
,
33
(
6
), pp.
E166
E173.
41.
Cannella
,
M.
,
Arthur
,
A.
,
Allen
,
S.
,
Keane
,
M.
,
Joshi
,
A.
,
Vresilovic
,
E.
, and
Marcolongo
,
M.
,
2008
, “
The Role of the Nucleus Pulposus in Neutral Zone Human Lumbar Intervertebral Disc Mechanics
,”
J. Biomech.
,
41
(
10
), pp.
2104
2111
.
42.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
43.
Markolf
,
K. L.
,
1972
, “
Deformation of the Thoracolumbar Intervertebral Joints in Response to External Loads: A Biomechanical Study Using Autopsy Material
,”
J. Bone Jt. Surg.
,
54
(
3
), pp.
511
533
.
44.
O'Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
933
942
.
45.
Bezci
,
S. E.
,
Eleswarapu
,
A.
,
Klineberg
,
E. O.
, and
O'Connell
,
G. D.
,
2018
, “
Contribution of Facet Joints, Axial Compression, and Composition to Human Lumbar Disc Torsion Mechanics
,”
J. Orthop. Res.
,
36
(8), pp. 2266–2273.
46.
Cook
,
D. J.
,
Yeager
,
M. S.
, and
Cheng
,
B. C.
,
2015
, “
Range of Motion of the Intact Lumbar Segment: A Multivariate Study of 42 Lumbar Spines
,”
Int. J. Spine Surg.
,
9
(5), pp.
1
8
.
47.
Pearcy
,
M.
,
Portek
,
I.
, and
Shepherd
,
J.
,
1984
, “
Three-Dimensional X-Ray Analysis of Normal Movement in the Lumbar Spine
,”
Spine
,
9
(
3
), pp.
294
297
.
48.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
(
11
), pp.
1256
1260
.
49.
Meijer
,
G. J.
,
Homminga
,
J.
,
Hekman
,
E. E.
,
Veldhuizen
,
A.
, and
Verkerke
,
G. J.
,
2010
, “
The Effect of Three-Dimensional Geometrical Changes During Adolescent Growth on the Biomechanics of a Spinal Motion Segment
,”
J. Biomech.
,
43
(
8
), pp.
1590
1597
.
50.
Panjabi
,
M. M.
,
Oxland
,
T.
,
Yamamoto
,
I.
, and
Crisco
,
J.
,
1994
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg.
,
76
(
3
), pp.
413
424
.
51.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
,
1986
, “
Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined With Compression
,”
Spine
,
11
(
9
), pp.
914
927
.
52.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2004
, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.
53.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in All Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
(
9
), pp.
1134
1147
.
54.
Amin
,
D.
,
Lawless
,
I.
,
Sommerfeld
,
D.
,
Stanley
,
R.
,
Ding
,
B.
, and
Costi
,
J.
,
2016
, “
The Effect of Six Degree of Freedom Loading Sequence on the In-Vitro Compressive Properties of Human Lumbar Spine Segments
,”
J. Biomech.
,
49
(
14
), pp.
3407
3414
.
55.
Berger-Roscher
,
N.
,
Casaroli
,
G.
,
Rasche
,
V.
,
Villa
,
T.
,
Galbusera
,
F.
, and
Wilke
,
H.-J.
,
2017
, “
Influence of Complex Loading Conditions on Intervertebral Disc Failure
,”
Spine
,
42
(
2
), pp.
E78
E85
.
56.
Adams
,
M.
,
McNally
,
D.
, and
Dolan
,
P.
,
1996
, “
Stress' distributions Inside Intervertebral Discs: The Effects of Age and Degeneration
,”
J. Bone Jt. Surg., Br.
,
78
(
6
), pp.
965
972
.
57.
McNally
,
D.
, and
Adams
,
M.
,
1992
, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
,
17
(
1
), pp.
66
73
.
58.
Roughley
,
P.
,
Hoemann
,
C.
,
DesRosiers
,
E.
,
Mwale
,
F.
,
Antoniou
,
J.
, and
Alini
,
M.
,
2006
, “
The Potential of Chitosan-Based Gels Containing Intervertebral Disc Cells for Nucleus Pulposus Supplementation
,”
Biomaterials
,
27
(
3
), pp.
388
396
.
59.
Pollintine
,
P.
,
van Tunen
,
M. S.
,
Luo
,
J.
,
Brown
,
M. D.
,
Dolan
,
P.
, and
Adams
,
M. A.
,
2010
, “
Time-Dependent Compressive Deformation of the Ageing Spine: Relevance to Spinal Stenosis
,”
Spine
,
35
(
4
), pp.
386
394
.
60.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging
,”
J. Orthop. Res.
,
15
(
2
), pp.
318
322
.
61.
Vernon-Roberts
,
B.
,
Fazzalari
,
N. L.
, and
Manthey
,
B. A.
,
1997
, “
Pathogenesis of Tears of the Anulus Investigated by Multiple-Level Transaxial Analysis of the T12-L1 Disc
,”
Spine
,
22
(
22
), pp.
2641
2646
.
62.
Vernon-Roberts
,
B.
,
Moore
,
R. J.
, and
Fraser
,
R. D.
,
2007
, “
The Natural History of Age-Related Disc Degeneration: The Pathology and Sequelae of Tears
,”
Spine
,
32
(
25
), pp.
2797
2804
.
63.
Chan
,
S. C.
,
Walser
,
J.
,
Käppeli
,
P.
,
Shamsollahi
,
M. J.
,
Ferguson
,
S. J.
, and
Gantenbein-Ritter
,
B.
,
2013
, “
Region Specific Response of Intervertebral Disc Cells to Complex Dynamic Loading: An Organ Culture Study Using a Dynamic Torsion-Compression Bioreactor
,”
PLoS One
,
8
(
8
), p.
e72489
.
64.
Casaroli
,
G.
,
Villa
,
T.
,
Bassani
,
T.
,
Berger-Roscher
,
N.
,
Wilke
,
H.-J.
, and
Galbusera
,
F.
,
2017
, “
Numerical Prediction of the Mechanical Failure of the Intervertebral Disc Under Complex Loading Conditions
,”
Materials
,
10
(31), pp. 1–14.
65.
Fields
,
A. J.
,
Lee
,
G. L.
, and
Keaveny
,
T. M.
,
2010
, “
Mechanisms of Initial Endplate Failure in the Human Vertebral Body
,”
J. Biomech.
,
43
(
16
), pp.
3126
3131
.
66.
Tavakoli
,
J.
,
Amin
,
D. B.
,
Freeman
,
B. J. C.
, and
Costi
,
J. J.
,
2018
, “
The Biomechanics of the Inter-Lamellar Matrix and the Lamellae During Progression to Lumbar Disc Herniation: Which Is the Weakest Structure?
,”
Ann. Biomed. Eng.
,
46
(9), pp. 1280–1291.
67.
Wilke
,
H.-J.
,
Kienle
,
A.
,
Maile
,
S.
,
Rasche
,
V.
, and
Berger-Roscher
,
N.
,
2016
, “
A New Dynamic Six Degrees of Freedom Disc-Loading Simulator Allows to Provoke Disc Damage and Herniation
,”
Eur. Spine J.
,
25
(
5
), pp.
1363
1372
.
68.
Veres
,
S. P.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2009
, “
The Morphology of Acute Disc Herniation: A Clinically Relevant Model Defining the Role of Flexion
,”
Spine
,
34
(
21
), pp.
2288
2296
.
69.
Brinckmann
,
P.
,
Frobin
,
W.
,
Hierholzer
,
E.
, and
Horst
,
M.
,
1983
, “
Deformation of the Vertebral End-Plate Under Axial Loading of the Spine
,”
Spine
,
8
(
8
), pp.
851
856
.
70.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
71.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand.
,
38
(
suppl. 100
), pp.
1
91
.
72.
Schollum
,
M. L.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2010
, “
How Age Influences Unravelling Morphology of Annular Lamellae—A Study of Interfibre Cohesivity in the Lumbar Disc
,”
J. Anat.
,
216
(
3
), pp.
310
319
.
73.
Fujiwara
,
A.
,
Lim
,
T.-H.
,
An
,
H. S.
,
Tanaka
,
N.
,
Jeon
,
C.-H.
,
Andersson
,
G. B.
, and
Haughton
,
V. M.
,
2000
, “
The Effect of Disc Degeneration and Facet Joint Osteoarthritis on the Segmental Flexibility of the Lumbar Spine
,”
Spine
,
25
(
23
), pp.
3036
3044
.https://oce.ovid.com/article/00007632-200012010-00011/HTML
You do not currently have access to this content.