Electrosurgical procedures are ubiquitously used in surgery. The commonly used power modes, including the coagulation and blend modes, utilize nonsinusoidal or modulated current waveforms. For the same power setting, the coagulation, blend, and pure cutting modes have different heating and thermal damage outcomes due to the frequency dependence of electrical conductivity of soft hydrated tissues. In this paper, we propose a multiphysics model of soft tissues to account for the effects of multifrequency electrosurgical power modes within the framework of a continuum thermomechanical model based on mixture theory. Electrical and frequency spectrum results from different power modes at low- and high-power settings are presented. Model predictions are compared with in vivo electrosurgical heating experiments on porcine liver tissue. The accuracy of the model in predicting experimentally observed temperature profiles is found to be overall greater when frequency-dependence is included. An Arrhenius type model indicates that more tissue damage is correlated with larger duty cycles in multifrequency modes.

References

References
1.
Sankaranarayanan
,
G.
,
Resapu
,
R. R.
,
Jones
,
D. B.
,
Schwaitzberg
,
S.
, and
De
,
S.
,
2013
, “
Common Uses and Cited Complications of Energy in Surgery
,”
Surg. Endosc.
,
27
(
9
), pp.
3056
3072
.
2.
Tucker
,
R. D.
,
1995
, “
Laparoscopic Electrosurgical Injuries: Survey Results and Their Implications
,”
Surg. Laparosc. Endosc. Percutan. Tech.
,
5
(
4
), p.
311
.https://europepmc.org/abstract/med/7551285
3.
Feldman
,
L.
,
Fuchshuber
,
P.
, and
Jones
,
D. B.
,
2012
,
The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE)
,
Springer Science & Business Media
, Berlin.
4.
Munro
,
M. G.
,
2012
, “
Fundamentals of Electrosurgery—Part I: Principles of Radiofrequency Energy for Surgery
,”
The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE)
,
Springer
,
New York
, pp.
15
59
.
5.
Wang
,
K.
, and
Advincula
,
A. P.
,
2007
, “
Current Thoughts' in Electrosurgery
,”
Int. J. Gynecol. Obstet.
,
97
(
3
), pp.
245
250
.
6.
Duffy
,
S.
,
Reid
,
P. C.
, and
Sharp
,
F.
,
1992
, “
In-Vivo Studies of Uterine Electrosurgery
,”
BJOG Int. J. Obstet. Gynaecol.
,
99
(
7
), pp.
579
582
.
7.
Richtmyer
,
J. M.
,
2006
, “
Electrosurgical Burns in Pediatric Patients Undergoing Liver Resection With Saline-Enhanced Radiofrequency Technology
,”
Aorn J.
,
83
(
3
), pp.
657
664
. Mar.
8.
Smith
,
T. L.
, and
Smith
,
J. M.
,
2001
, “
Electrosurgery in Otolaryngology–Head and Neck Surgery: Principles, Advances, and Complications
,”
Laryngoscope
,
111
(
5
), pp.
769
780
.
9.
Patel
,
A.
,
Fuchs
,
G. J.
,
Gutierrez-Aceves
,
J.
, and
Ryan
,
T. P.
,
1997
, “
Prostate Heating Patterns Comparing Electrosurgical Transurethral Resection and Vaporization: A Prospective Randomized Study
,”
J. Urol.
,
157
(
1
), pp.
169
172
.
10.
Chino
,
A.
,
Karasawa
,
T.
,
Uragami
,
N.
,
Endo
,
Y.
,
Takahashi
,
H.
, and
Fujita
,
R.
,
2004
, “
A Comparison of Depth of Tissue Injury Caused by Different Modes of Electrosurgical Current in a Pig Colon Model
,”
Gastrointest. Endosc.
,
59
(
3
), pp.
374
379
.
11.
Tucker
,
R. D.
,
Benda
,
J. A.
,
Sievert
,
C. E.
, and
Engel
,
T.
,
1992
, “
The Effect of Bipolar Electrosurgical Coagulation Waveform on a Rat Uterine Model of Fallopian Tube Sterilization
,”
J. Gynecol. Surg.
,
8
(
4
), pp.
235
241
.
12.
Fry
,
L. C.
,
Lazenby
,
A. J.
,
Mikolaenko
,
I.
,
Barranco
,
B.
,
Rickes
,
S.
, and
Mönkemüller
,
K.
,
2006
, “
Diagnostic Quality of: Polyps Resected by Snare Polypectomy: Does the Type of Electrosurgical Current Used Matter?
,”
Am. J. Gastroenterol.
,
101
(
9
), p.
2123
.
13.
Gabriel
,
S.
,
Lau
,
R. W.
, and
Gabriel
,
C.
,
1996
, “
The Dielectric Properties of Biological Tissues—II: Measurements in the Frequency Range 10 Hz to 20 GHz
,”
Phys. Med. Biol.
,
41
(
11
), p.
2251
.
14.
Gabriel
,
C.
,
Peyman
,
A.
, and
Grant
,
E. H.
,
2009
, “
Electrical Conductivity of Tissue at Frequencies Below 1 MHz
,”
Phys. Med. Biol.
,
54
(
16
), p.
4863
.
15.
Haemmerich
,
D.
,
Schutt
,
D. J.
,
Wright
,
A. S.
,
Webster
,
J. G.
, and
Mahvi
,
D. M.
,
2009
, “
Electrical Conductivity Measurement of Excised Human Metastatic Liver Tumours Before and After Thermal Ablation
,”
Physiol. Meas.
,
30
(
5
), p.
459
.
16.
Laufer
,
S.
,
Ivorra
,
A.
,
Reuter
,
V. E.
,
Rubinsky
,
B.
, and
Solomon
,
S. B.
,
2010
, “
Electrical Impedance Characterization of Normal and Cancerous Human Hepatic Tissue
,”
Physiol. Meas.
,
31
(
7
), p.
995
.
17.
Zurbuchen
,
U.
,
Holmer
,
C.
,
Lehmann
,
K. S.
,
Stein
,
T.
,
Roggan
,
A.
,
Seifarth
,
C.
,
Buhr
,
H. J.
, and
Ritz
,
J. P.
,
2010
, “
Determination of the Temperature-Dependent Electric Conductivity of Liver Tissue Ex Vivo and In Vivo: Importance for Therapy Planning for the Radiofrequency Ablation of Liver Tumours
,”
Int. J. Hyperthermia
,
26
(
1
), pp.
26
33
.
18.
Haemmerich
,
D.
,
Ozkan
,
O. R.
,
Tsai
,
J. Z.
,
Staelin
,
S. T.
,
Tungjitkusolmun
,
S.
,
Mahvi
,
D. M.
, and
Webster
,
J. G.
,
2002
, “
Changes in Electrical Resistivity of Swine Liver After Occlusion and Postmortem
,”
Med. Biol. Eng. Comput.
,
40
(
1
), pp.
29
33
.
19.
Karaki
,
W.
,
Rahul
,
Lopez
,
C. A.
,
Borca-Tasciuc
,
D.-A.
, and
De
,
S.
,
2017
, “
A Two-Scale Model of Radio-Frequency Electrosurgical Tissue Ablation
,”
Comput. Mech.
, pp.
1
12
.https://link.springer.com/article/10.1007/s00466-017-1529-6
20.
Karaki
,
W.
,
Rahul
,
Lopez
,
C. A.
,
Borca-Tasciuc
,
D.-A.
, and
De
,
S.
,
2018
, “
A Continuum Thermomechanical Model of In Vivo Electrosurgical Heating of Hydrated Soft Biological Tissues
,”
Int. J. Heat Mass Transfer
,
127
(
Part A
), pp.
961
974
.
21.
Chen
,
R. K.
,
Chastagner
,
M. W.
,
Dodde
,
R. E.
, and
Shih
,
A. J.
,
2013
, “
Electrosurgical Vessel Sealing Tissue Temperature: Experimental Measurement and Finite Element Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
453
460
.
22.
Chang
,
I.
,
2003
, “
Finite Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature-Dependent Electrical Conductivity
,”
Biomed. Eng. Online
,
2
(
1
), p.
12
.
23.
Karaki
,
W.
,
Akyildiz
,
A.
,
De
,
S.
, and
Borca-Tasciuc
,
D. A.
,
2017
, “
Energy Dissipation in Ex Vivo Porcine Liver During Electrosurgery
,”
IEEE Trans. Biomed. Eng.
,
64
(
6
), pp.
1211
1217
.
24.
Chiang
,
J.
,
Birla
,
S.
,
Bedoya
,
M.
,
Jones
,
D.
,
Subbiah
,
J.
, and
Brace
,
C. L.
,
2015
, “
Modeling and Validation of Microwave Ablations With Internal Vaporization
,”
IEEE Trans. Biomed. Eng.
,
62
(
2
), pp.
657
663
.
25.
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2007
, “
A Thermal-Ablation Bioheat Model Including Liquid-to-Vapor Phase Change, Pressure- and Necrosis-Dependent Perfusion, and Moisture-Dependent Properties
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2537
2544
.
26.
Yang
,
D.
,
Converse
,
M. C.
,
Mahvi
,
D. M.
, and
Webster
,
J. G.
,
2007
, “
Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating
,”
IEEE Trans. Biomed. Eng.
,
54
(
8
), pp.
1382
1388
.
27.
Berjano
,
E. J.
,
2006
, “
Theoretical Modeling for Radiofrequency Ablation: State-of-the-Art and Challenges for the Future
,”
Biomed. Eng. Online
,
5
(
1
), p.
24
Apr.
28.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
Oxford, UK
.
29.
Bixler
,
N. E.
,
1985
,
NORIA: A Finite Element Computer Program for Analyzing Water, Vapor, Air and Energy Transport in Porous Media
,
Sandia National Laboratories
,
Albuquerque, NM
.
30.
Mertyna
,
P.
,
Goldberg
,
W.
,
Yang
,
W.
, and
Goldberg
,
S. N.
,
2009
, “
Thermal Ablation: A Comparison of Thermal Dose Required for Radiofrequency-, Microwave-, and Laser-Induced Coagulation in an Ex Vivo Bovine Liver Model
,”
Acad. Radiol.
,
16
(
12
), pp.
1539
1548
.
31.
Wright
,
N. T.
,
2003
, “
On a Relationship Between the Arrhenius Parameters From Thermal Damage Studies
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
300
304
.
32.
Slager
,
C. J.
,
Schuurbiers
,
J. C.
,
Oomen
,
J. A.
, and
Bom
,
N.
,
1993
, “
Electrical Nerve and Muscle Stimulation by Radio Frequency Surgery: Role of Direct Current Loops Around the Active Electrode
,”
IEEE Trans. Biomed. Eng.
,
40
(
2
), pp.
182
187
.
33.
Lacourse
,
J. R.
,
Miller
,
W. T.
,
Vogt
,
M.
, and
Selikowitz
,
S. M.
,
1985
, “
Effect of High-Frequency Current on Nerve and Muscle Tissue
,”
IEEE Trans. Biomed. Eng.
,
BME-32
(
1
), pp.
82
86
.
You do not currently have access to this content.