We experimentally determined the tensile stress–strain response of human muscle along fiber direction and compressive stress–strain response transverse to fiber direction at intermediate strain rates (100–102/s). A hydraulically driven material testing system with a dynamic testing mode was used to perform the tensile and compressive experiments on human muscle tissue. Experiments at quasi-static strain rates (below 100/s) were also conducted to investigate the strain-rate effects over a wider range. The experimental results show that, at intermediate strain rates, both the human muscle's tensile and compressive stress–strain responses are nonlinear and strain-rate sensitive. Human muscle also exhibits a stiffer and stronger tensile mechanical behavior along fiber direction than its compressive mechanical behavior along the direction transverse to fiber direction. An Ogden model with two material constants was adopted to describe the nonlinear tensile and compressive behaviors of human muscle.

References

References
1.
Bosboom
,
E.
,
Hesselink
,
M.
,
Oomens
,
C.
,
Bouten
,
C.
,
Drost
,
M.
, and
Baaijens
,
F.
,
2001
, “
Passive Transverse Mechanical Properties of Skeletal Muscle Under In Vivo Compression
,”
J. Biomech.
,
34
(
10
), pp.
1365
1368
.
2.
van Loocke
,
M.
,
Lyons
,
C.
, and
Simms
,
C.
,
2006
, “
A Validated Model of Passive Muscle in Compression
,”
J. Biomech.
,
39
(
16
), pp.
2999
3009
.
3.
van Loocke
,
M.
,
Simms
,
C.
, and
Lyons
,
C.
,
2009
, “
Viscoelastic Properties of Passive Skeletal Muscle in Compression-Cyclic Behaviour
,”
J. Biomech.
,
42
(
8
), pp.
1038
1048
.
4.
Takaza
,
M.
,
Moerman
,
K.
,
Gindre
,
J.
,
Lyons
,
G.
, and
Simms
,
C.
,
2013
, “
The Anisotropic Mechanical Behaviour of Passive Skeletal Muscle Tissue Subjected to Large Tensile Strain
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
209
220
.
5.
Wheatley
,
B.
,
Odegard
,
G.
,
Kaufman
,
K.
, and
Donahue
,
T.
,
2016
, “
How Does Tissue Preparation Affect Skeletal Muscle Transverse Isotropy?
,”
J. Biomech.
,
49
(
13
), pp.
3056
3060
.
6.
Morrow
,
D.
,
Donahue
,
T.
,
Odegard
,
G.
, and
Kaufman
,
K.
,
2010
, “
Transversely Isotropic Tensile Material Properties of Skeletal Muscle Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
124
129
.
7.
Song
,
B.
,
Chen
,
W.
,
Ge
,
Y.
, and
Weerasooriya
,
T.
,
2007
, “
Dynamic and Quasi-Static Compressive Response of Porcine Muscle
,”
J. Biomech.
,
40
(
13
), pp.
2999
3005
.
8.
Nie
,
X.
,
Cheng
,
J.
,
Chen
,
W. W.
, and
Weerasooriya
,
T.
,
2010
, “
Dynamic Tensile Response of Porcine Muscle
,”
ASME J. Appl. Mech.
,
78
(2), pp.
1
5
.
9.
Pinto
,
J.
, and
Fung
,
Y.
,
1973
, “
Mechanical Properties of the Heart Muscle in the Passive State
,”
J. Biomech.
,
6
(
6
), pp.
597
616
.
10.
Gillies
,
A.
, and
Lieber
,
R.
,
2011
, “
Structure and Function of the Skeletal Muscle Extracellular Matrix
,”
Muscle Nerve
,
44
(3), pp.
318
331
.
11.
Meyer
,
G.
, and
Lieber
,
R.
,
2011
, “
Elucidation of Extracellular Matrix Mechanics From Muscle Fibers and Fiber Bundles
,”
J. Biomech.
,
44
(
4
), pp.
771
773
.
12.
Gillies
,
A.
,
Smith
,
L.
,
Lieber
,
R.
, and
Varghese
,
S.
,
2011
, “
Method for Decellularizing Skeletal Muscle Without Detergents or Proteolytic Enzymes
,”
Tissue Eng., Part C Methods
,
17
(
4
), pp.
383
389
.
13.
Song
,
B.
,
Syn
,
C. J.
,
Grupido
,
C. L.
,
Chen
,
W.
, and
Lu
,
W. Y.
,
2008
, “
A Long Split Hopkinson Pressure Bar (LSHPB) for Intermediate-Rate Characterization of Soft Materials
,”
Exp. Mech.
,
48
(
6
), pp.
809
815
.
14.
Chen
,
W. W.
,
2016
, “
Experimental Methods for Characterizing Dynamic Response of Soft Materials
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
2
14
.
15.
Regazzoni
,
G.
,
Johnson
,
J. N.
, and
Follansbee
,
P. S.
,
1986
, “
Theoretical Study of the Dynamic Tensile Test
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
519
528
.
16.
Bleck
,
W.
, and
Schael
,
I.
,
2000
, “
Determination of Crash-Relevant Material Parameters by Dynamic Tensile Tests
,”
Steel Res.
,
71
(
5
), pp.
173
178
.
17.
Boyce
,
B. L.
, and
Dilmore
,
M. F.
,
2009
, “
The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates From 0.0002 s−1 to 200 s−1
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
263
271
.
18.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London. Ser., Part A
,
328
(
1575
), pp.
567
583
.
19.
Zhai
,
X.
, and
Chen
,
W. W.
,
2018
, “
Compressive Mechanical Response of Porcine Muscle at Intermediate (100/s-102/s) Strain Rates
,”
Exp. Mech.
(accepted).
20.
Mutungi
,
G.
,
Purslow
,
P.
, and
Warkup
,
C.
,
1995
, “
Structural and Mechanical Changes in Raw and Cooked Single Porcine Muscle Fibers Extended to Fracture
,”
Meat Sci.
,
40
(
2
), pp.
217
234
.
21.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Critcal Rev. Biomed. Eng.
,
17
(4), pp. 359–411.https://www.ncbi.nlm.nih.gov/pubmed/2676342
22.
Zuurbier
,
C. J.
,
Everard
,
A. J.
,
van der Wees
,
P.
, and
Huijing
,
P. A.
,
1994
, “
Length-Force Characteristics of the Aponeurosis in the Passive and Active Muscle Condition and in the Isolated Condition
,”
J. Biomech.
,
27
(
4
), pp.
445
453
.
23.
Maisetti
,
O.
,
Hug
,
F.
,
Bouillard
,
K.
, and
Nordez
,
A.
,
2012
, “
Characterization of Passive Elastic Properties of the Human Medial Gastrocnemius Muscle Belly Using Supersonic Shear Imaging
,”
J. Biomech.
,
45
, pp.
978
984
.
24.
Van Ee
,
C. A.
,
Chasse
,
A. L.
, and
Myers
,
B. S.
,
1999
, “
Quantifying Skeletal Muscle Properties in Cadaveric Test Specimens: Effects of Mechanical Loading, Postmortem Time, and Freezer Storage
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
9
14
.
You do not currently have access to this content.