Posterior fixation with contoured rods is an established methodology for the treatment of spinal deformities. Both uniform industrial preforming and intraoperative contouring introduce tensile and compressive plastic deformations, respectively, at the concave and at the convex sides of the rod. The purpose of this study is to develop a validated numerical framework capable of predicting how the fatigue behavior of contoured spinal rods is affected by residual stresses when loaded in lordotic and kyphotic configurations. Established finite element models (FEM) describing static contouring were implemented as a preliminary simulation step and were followed by subsequent cyclical loading steps. The equivalent Sines stress distribution predicted in each configuration was compared to that in straight rods (SR) and related to the corresponding experimental number of cycles to failure. In the straight configuration, the maximum equivalent stress (441 MPa) exceeds the limit curve, as confirmed by experimental rod breakage after around 1.9 × 105 loading cycles. The stresses further increased in the lordotic configuration, where failure was reached within 2.4 × 104 cycles. The maximum equivalent stress was below the limit curve for the kyphotic configuration (640 MPa), for which a run-out of 106 cycles was reached. Microscopy inspection confirmed agreement between numerical predictions and experimental fatigue crack location. The contouring technique (uniform contouring (UC) or French bender (FB)) was not related to any statistically significant difference. Our study demonstrates the key role of residual stresses in altering the mean stress component, superposing to the tensile cyclic load, potentially explaining the higher failure rate of lordotic rods compared to kyphotic ones.

References

References
1.
Barton
,
C.
,
Noshchenko
,
A.
,
Patel
,
V.
,
Cain
,
C.
,
Kleck
,
C.
, and
Burger
,
E.
,
2015
, “
Risk Factors for Rod Fracture After Posterior Correction of Adult Spinal Deformity With Osteotomy: A Retrospective Case-Series
,”
Scoliosis
,
10
, p.
30
.
2.
Berjano
,
P.
,
Bassani
,
R.
,
Casero
,
G.
,
Sinigaglia
,
A.
,
Cecchinato
,
R.
, and
Lamartina
,
C.
,
2013
, “
Failures and Revisions in Surgery for Sagittal Imbalance: Analysis of Factors Influencing Failure
,”
Eur. Spine J.
,
22
(
S6
), pp.
853
858
.
3.
Charosky
,
S.
,
Guigui
,
P.
,
Blamoutier
,
A.
,
Roussouly
,
P.
, and
Chopin
,
D.
,
2012
, “
Complications and Risk Factors of Primary Adult Scoliosis Surgery: A Multicenter Study of 306 Patients
,”
Spine
,
37
(
8
), pp.
693
700
.
4.
Luca
,
A.
,
Ottardi
,
C.
,
Sasso
,
M.
,
Prosdocimo
,
L.
,
La Barbera
,
L.
,
Brayda-Bruno
,
M.
,
Galbusera
,
F.
, and
Villa
,
T.
,
2017
, “
Instrumentation Failure Following Pedicle Subtraction Osteotomy: The Role of Rod Material, Diameter, and Multi-Rod Constructs
,”
Eur Spine J.
,
26
(3), pp. 764–770.
5.
Smith
,
J. S.
,
Shaffrey
,
E.
,
Klineberg
,
E.
,
Shaffrey
,
C. I.
,
Lafage
,
V.
,
Schwab
,
F. J.
,
Protopsaltis
,
T.
,
Scheer
,
J. K.
,
Mundis
,
G. J.
,
Fu
,
K.-M. G.
,
Gupta
,
M. C.
,
Hostin
,
R.
,
Deviren
,
V.
,
Kebaish
,
K.
,
Hart
,
R.
,
Burton
,
D. C.
,
Line
,
B.
,
Bess
,
S.
,
Ames
,
C. P.
, and
Group
,
I. S. S.
,
2014
, “
Prospective Multicenter Assessment of Risk Factors for Rod Fracture Following Surgery for Adult Spinal Deformity
,”
J. Neurosurg. Spine
,
21
(
6
), pp.
994
1003
.
6.
Yang
,
J. S.
,
Sponseller
,
P. D.
,
Thompson
,
G. H.
,
Akbarnia
,
B. A.
,
Emans
,
J. B.
,
Yazici
,
M.
,
Skaggs
,
D. L.
,
Shah
,
S. A.
,
Salari
,
P.
, and
Poe-Kochert
,
C.
,
2011
, “
Growing Rod Fractures: Risk Factors and Opportunities for Prevention
,”
Spine
,
36
(
20
), pp.
1639
1644
.
7.
Cook
,
E. J.
,
1982
, “
Rod Bender
,” U. S. Patent No. 4474046A.
8.
Berti
,
F.
,
La Barbera
,
L.
,
Piovesan
,
A.
,
Allegretti
,
D.
,
Ottardi
,
C.
,
Villa
,
T.
, and
Pennati
,
G.
,
2018
, “
Residual Stresses in Titanium Spinal Rods: Effects of Two Contouring Methods and Material Plastic Properties
,”
ASME J. Biomech. Eng.
,
140
(
11
), p.
111001
.
9.
Demura
,
S.
,
Murakami
,
H.
,
Hayashi
,
H.
,
Kato
,
S.
,
Yoshioka
,
K.
,
Yokogawa
,
N.
,
Ishii
,
T.
,
Igarashi
,
T.
,
Fang
,
X.
, and
Tsuchiya
,
H.
,
2015
, “
Influence of Rod Contouring on Rod Strength and Stiffness in Spine Surgery
,”
Orthopedics
,
38
(
6
), pp.
e520
e523
.
10.
Noshchenko
,
A.
,
Xianfeng
,
Y.
,
Armour
,
G. A.
,
Baldini
,
T.
,
Patel
,
V. V.
,
Ayers
,
R.
, and
Burger
,
E.
,
2011
, “
Evaluation of Spinal Instrumentation Rod Bending Characteristics for In-Situ Contouring
,”
J. Biomed. Mater. Res. Part B
,
98
(
1
), pp.
192
200
.
11.
Tang
,
J. A.
,
Leasure
,
J. M.
,
Smith
,
J. S.
,
Buckley
,
J. M.
,
Kondrashov
,
D.
, and
Ames
,
C. P.
,
2013
, “
Effect of Severity of Rod Contour on Posterior Rod Failure in the Setting of Lumbar Pedicle Subtraction Osteotomy (PSO): A Biomechanical Study
,”
Neurosurgery
,
72
(
2
), pp.
276
282
.
12.
Slivka
,
M. A.
,
Fan
,
Y. K.
, and
Eck
,
J. C.
,
2013
, “
The Effect of Contouring on Fatigue Strength of Spinal Rods: Is It Okay to Re-Bend and Which Materials Are Best?
,”
Spine Deform.
,
1
(
6
), pp.
395
400
.
13.
Lindsey
,
C.
,
Deviren
,
V.
,
Xu
,
Z.
,
Yeh
,
R.-F.
, and
Puttlitz
,
C. M.
,
2006
, “
The Effects of Rod Contouring on Spinal Construct Fatigue Strength
,”
Spine
,
31
(
15
), pp.
1680
1687
.
14.
Smith
,
J. S.
,
Shaffrey
,
C. I.
,
Ames
,
C. P.
,
Demakakos
,
J.
,
Fu
,
K. M. G.
,
Keshavarzi
,
S.
,
Carol
,
C. M.
,
Deviren
,
V.
,
Schwab
,
F. J.
,
Lafage
,
V.
, and
Bess
,
S.
,
2012
, “
Assessment of Symptomatic Rod Fracture After Posterior Instrumented Fusion for Adult Spinal Deformity
,”
Neurosurgery
,
71
(
4
), pp.
862
867
.
15.
Han
,
K. S.
,
Rohlmann
,
A.
,
Zander
,
T.
, and
Taylor
,
W. R.
,
2013
, “
Lumbar Spinal Loads Vary With Body Height and Weight
,”
Med. Eng. Phys.
,
35
(
7
), pp.
969
977
.
16.
Cholewicki
,
J.
, and
McGill
,
S. M.
,
1996
, “
Mechanical Stability of the In Vivo Lumbar Spine: Implications for Injury and Chronic Low Back Pain
,”
Clin. Biomech.
,
11
(
1
), pp.
1
15
.
17.
La Barbera
,
L.
,
Brayda-Bruno
,
M.
,
Liebsch
,
C.
,
Villa
,
T.
,
Luca
,
A.
,
Galbusera
,
F.
, and
Wilke
,
H. J.
,
2018
, “
Biomechanical Advantages of Supplemental Accessory and Satellite Rods With and Without Interbody Cages Implantation for the Stabilization of Pedicle Subtraction Osteotomy
,”
Eur. Spine J.
,
27
(
9
), pp.
1
10
.
18.
La Barbera
,
L.
,
Galbusera
,
F.
,
Wilke
,
H. J.
, and
Villa
,
T.
,
2016
, “
Preclinical Evaluation of Posterior Spine Stabilization Devices: Can the Current Standards Represent Basic Everyday Life Activities?
,”
Eur. Spine J.
,
25
(
9
), pp.
2909
2918
.
19.
Sines
,
G.
,
Waisman
,
J. L.
, and
Dolan
,
T. J.
,
1959
,
Metal Fatigue
,
McGraw-Hill
, New York.
20.
Rack
,
H. J.
, and
Qazi
,
J. I.
,
2006
, “
Titanium Alloys for Biomedical Applications
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1269
1277
.
21.
Saitova
,
L. R.
,
Höppel
,
H. W.
,
Göken
,
M.
,
Semenova
,
I. P.
, and
Valiev
,
R. Z.
,
2009
, “
Cyclic Deformation Behavior and Fatigue Lives of Ultrafine-Grained Ti-6Al-4V ELI Alloy for Medical Use
,”
Int. J. Fatigue
,
31
(
2
), pp.
322
331
.
22.
Dick
,
J. C.
, and
Bourgeault
,
C. A.
,
2001
, “
Notch Sensitivity of Titanium Alloy, Commercially Pure Titanium, and Stainless Steel Spinal Implants
,”
Spine
,
26
(
15
), pp.
1668
1672
.
23.
Melkerson
,
M. N.
,
Griffith
,
S. L.
, and
Kirkpatrick
,
J. S.
,
2003
,
Spinal Implants: Are We Evaluating Them Appropriately
?, ASTM International, West Conshohocken, PA, Publication No. 1431.
You do not currently have access to this content.