The control of joint stiffness is a fundamental mechanism used to control human movements. While many studies have observed how stiffness is modulated for tasks involving shoulder and elbow motion, a limited amount of knowledge is available for wrist movements, though the wrist plays a crucial role in manipulation. We have developed a computational framework based on a realistic musculoskeletal model, which allows one to calculate the passive and active components of the wrist joint stiffness. We first used the framework to validate the musculoskeletal model against experimental measurements of the wrist joint stiffness, and then to study the contribution of different muscle groups to the passive joint stiffness. We finally used the framework to study the effect of muscle cocontraction on the active joint stiffness. The results show that thumb and finger muscles play a crucial role in determining the passive wrist joint stiffness: in the neutral posture, the direction of maximum stiffness aligns with the experimental measurements, and the magnitude increases by 113% when they are included. Moreover, the analysis of the controllability of joint stiffness showed that muscle cocontraction positively correlates with the stiffness magnitude and negatively correlates with the variability of the stiffness orientation (p < 0.01 in both cases). Finally, an exhaustive search showed that with appropriate selection of a muscle activation strategy, the joint stiffness orientation can be arbitrarily modulated. This observation suggests the absence of biomechanical constraints on the controllability of the orientation of the wrist joint stiffness.

References

1.
Rancourt
,
D.
, and
Hogan
,
N.
,
2001
, “
Dynamics of Pushing
,”
J. Motor Behav.
,
33
(
4
), pp.
351
362
.
2.
Bastian
,
A. J.
,
Martin
,
T. A.
,
Keating
,
J. G.
, and
Thach
,
W. T.
,
1996
, “
Cerebellar Ataxia: Abnormal Control of Interaction Torques Across Multiple Joints
,”
J. Neurophys.
,
76
(
1
), pp.
492
509
.
3.
Bastian
,
A. J.
,
2006
, “
Learning to Predict the Future: The Cerebellum Adapts Feedforward Movement Control
,”
Curr. Opin. Neurobiol.
,
16
(
6
), pp.
645
649
.
4.
Milner
,
T. E.
,
2002
, “
Contribution of Geometry and Joint Stiffness to Mechanical Stability of the Human Arm
,”
Exp. Brain Res.
,
143
(
4
), pp.
515
519
.
5.
Mussa-Ivaldi
,
F. A.
,
Hogan
,
N.
, and
Bizzi
,
E.
,
1985
, “
Neural, Mechanical, and Geometric Factors Subserving Arm Posture in Humans
,”
J. Neurosci.: Off. J. Soc. Neurosci.
,
5
(
10
), pp.
2732
2743
.
6.
Trumbower
,
R. D.
,
Krutky
,
M. A.
,
Yang
,
B. S.
, and
Perreault
,
E. J.
,
2009
, “
Use of Self-Selected Postures to Regulate Multi-Joint Stiffness During Unconstrained Tasks
,”
PLoS One
,
4
(
5
), p. e5411.
7.
Hogan
,
N.
,
1984
, “
Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
,”
IEEE Trans. Autom. Control
,
29
(
8
), pp.
681
690
.
8.
Milner
,
T. E.
,
2002
, “
Adaptation to Destabilizing Dynamics by Means of Muscle Cocontraction
,”
Exp. Brain Res.
,
143
(
4
), pp.
406
416
.
9.
Rack
,
P. M.
, and
Westbury
,
D. R.
,
1974
, “
The Short Range Stiffness of Active Mammalian Muscle and Its Effect on Mechanical Properties
,”
J. Physiol.
,
240
(
2
), pp.
331
350
.
10.
Morgan
,
D. L.
,
1977
, “
Separation of Active and Passive Components of Short-Range Stiffness of Muscle
,”
Am. J. Physiol.
,
232
(
1
), pp.
C45
C49
.
11.
Formica
,
D.
,
Charles
,
S. K.
,
Zollo
,
L.
,
Guglielmelli
,
E.
,
Hogan
,
N.
, and
Krebs
,
H. I.
,
2012
, “
The Passive Stiffness of the Wrist and Forearm
,”
J. Neurophysiol.
,
108
(
4
), pp.
1158
1166
.
12.
Pando
,
A. L.
,
Lee
,
H.
,
Drake
,
W. B.
,
Hogan
,
N.
, and
Charles
,
S. K.
,
2014
, “
Position-Dependent Characterization of Passive Wrist Stiffness
,”
IEEE Trans. Biomed. Eng.
,
61
(
8
), pp.
2235
2244
.
13.
Lee
,
H.
,
Ho
,
P.
,
Rastgaar
,
M. A.
,
Krebs
,
H. I.
, and
Hogan
,
N.
,
2011
, “
Multivariable Static Ankle Mechanical Impedance With Relaxed Muscles
,”
J. Biomech.
,
44
(
10
), pp.
1901
1908
.
14.
Franklin
,
D. W.
, and
Milner
,
T. E.
,
2003
, “
Adaptive Control of Stiffness to Stabilize Hand Position With Large Loads
,”
Exp. Brain Res.
,
152
(
2
), pp.
211
220
.
15.
McIntyre
,
J.
,
Mussa-Ivaldi
,
F.
, and
Bizzi
,
E.
,
1996
, “
The Control of Stable Postures in the Multijoint Arm
,”
Exp. Brain Research
,
110
(
2
), pp.
248
264
.
16.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Crago
,
P. E.
,
2001
, “
Effects of Voluntary Force Generation on the Elastic Components of Endpoint Stiffness
,”
Exp. Brain Res.
,
141
(
3
), pp.
312
323
.
17.
Schouten
,
A. C.
,
de Vlugt
,
E.
,
van Hilten
,
J. J. B.
, and
van der Helm
,
F. C. T.
,
2006
, “
Design of a Torque-Controlled Manipulator to Analyse the Admittance of the Wrist Joint
,”
J. Neurosci. Methods
,
154
(
1–2
), pp.
134
141
.
18.
Klomp
,
A.
,
De Groot
,
J. H.
,
De Vlugt
,
E.
,
Meskers
,
C. G.
,
Arendzen
,
J. H.
, and
Van Der Helm
,
F. C.
,
2014
, “
Perturbation Amplitude Affects Linearly Estimated Neuromechanical Wrist Joint Properties
,”
IEEE Trans. Biomed. Eng.
,
61
(
4
), pp.
1005
1014
.
19.
de Vlugt
,
E.
,
van Eesbeek
,
S.
,
Baines
,
P.
,
Hilte
,
J.
,
Meskers
,
C. G.
, and
de Groot
,
J. H.
,
2011
, “
Short Range Stiffness Elastic Limit Depends on Joint Velocity
,”
J. Biomech.
,
44
(
11
), pp.
2106
2112
.
20.
De Serres
,
S. J.
, and
Milner
,
T. E.
,
1991
, “
Wrist Muscle Activation Patterns and Stiffness Associated With Stable and Unstable Mechanical Loads
,”
Exp. Brain Res.
,
86
(
2
), pp.
451
458
.
21.
Shadmehr
,
R.
,
Mussa-Ivaldi
,
F. A.
, and
Bizzi
,
E.
,
1993
, “
Postural Force Fields of the Human Arm and Their Role in Generating Multijoint Movements
,”
J. Neurosci.: Off. J. Soc. Neurosci.
,
13
(
1
), pp.
45
62
.
22.
Weiss
,
P.
,
Hunter
,
I.
, and
Kearney
,
R.
,
1988
, “
Human Ankle Joint Stiffness Over the Full Range of Muscle Activation Levels
,”
J. Biomech.
,
21
(
7
), pp.
539
544
.
23.
Bennett
,
D. J.
,
Hollerbach
,
J. M.
,
Xu
,
Y.
, and
Hunter
,
I. W.
,
1992
, “
Time-Varying Stiffness of Human Elbow Joint During Cyclic Voluntary Movement
,”
Exp. Brain Res.
,
88
(
2
), pp.
433
442
.
24.
Osu
,
R.
,
Franklin
,
D. W.
,
Kato
,
H.
,
Gomi
,
H.
,
Domen
,
K.
,
Yoshioka
,
T.
, and
Kawato
,
M.
,
2002
, “
Short- and Long-Term Changes in Joint Co-Contraction Associated With Motor Learning as Revealed From Surface EMG
,”
J. Neurophysiol.
,
88
(
2
), pp.
991
1004
.
25.
Burdet
,
E.
,
Osu
,
R.
,
Franklin
,
D. W.
,
Milner
,
T. E.
, and
Kawato
,
M.
,
2001
, “
The Central Nervous System Stabilizes Unstable Dynamics by Learning Optimal Impedance
,”
Nature
,
414
(
6862
), pp.
446
449
.
26.
Franklin
,
D.
,
Liaw
,
G.
,
Milner
,
T.
,
Osu
,
R.
,
Burdet
,
E.
, and
Kawato
,
M.
,
2007
, “
Endpoint Stiffness of the Arm is Directionally Tuned to Instability in the Environment
,”
J. Neurosci.: Off. J. Soc. Neurosci.
,
27
(
29
), pp.
7705
7716
.
27.
Franklin
,
D.
,
So
,
U.
,
Kawato
,
M.
, and
Milner
,
T.
,
2004
, “
Impedance Control Balances Stability With Metabolically Costly Muscle Activation
,”
J. Neurophysiol.
,
26
(
9
), pp.
2468
2477
.
28.
Kadiallah
,
A.
,
Liaw
,
G.
,
Kawato
,
M.
,
Franklin
,
D. W.
, and
Burdet
,
E.
,
2011
, “
Impedance Control is Selectively Tuned to Multiple Directions of Movement
,”
J. Neurophysiol.
,
106
(
5
), pp.
2737
2748
.
29.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Crago
,
P. E.
,
2002
, “
Voluntary Control of Static Endpoint Stiffness During Force Regulation Tasks
,”
J. Neurophysiol.
,
87
(
6
), pp.
2808
2816
.
30.
Gomi
,
H.
, and
Osu
,
R.
,
1998
, “
Task-Dependent Viscoelasticity of Human Multijoint Arm and Its Spatial Characteristics for Interaction With Environments
,”
J. Neurosci.: Off. J. Soc. Neurosci.
,
18
(
21
), pp.
8965
8978
.
31.
Darainy
,
M.
,
2004
, “
Learning to Control Arm Stiffness Under Static Conditions
,”
J. Neurophysiol.
,
92
(
6
), pp.
3344
3350
.
32.
Charles
,
S. K.
, and
Hogan
,
N.
,
2011
, “
Dynamics of Wrist Rotations
,”
J. Biomech.
,
44
(
4
), pp.
614
621
.
33.
Milner
,
T. E.
, and
Cloutier
,
C.
,
1993
, “
Compensation for Mechanically Unstable Loading in Voluntary Wrist Movement
,”
Exp. Brain Res.
,
94
(
3
), pp.
522
532
.
34.
Milner
,
T. E.
, and
Cloutier
,
C.
,
1998
, “
Damping of the Wrist Joint During Voluntary Movement
,”
Exp. Brain Res.
,
122
(
3
), pp.
309
317
.
35.
Halaki
,
M.
,
O'Dwyer
,
N.
, and
Cathers
,
I.
,
2006
, “
Systematic Nonlinear Relations Between Displacement Amplitude and Joint Mechanics at the Human Wrist
,”
J. Biomech.
,
39
(
12
), pp.
2171
2182
.
36.
Deshpande
,
A. D.
,
Gialias
,
N.
, and
Matsuoka
,
Y.
,
2012
, “
Contributions of Intrinsic Visco-Elastic Torques During Planar Index Finger and Wrist Movements
,”
IEEE Trans. Biomed. Eng.
,
59
(
2
), pp.
586
594
.
37.
Inouye
,
J. M.
, and
Valero-Cuevas
,
F. J.
,
2016
, “
Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption
,”
PLoS Comput. Biol.
,
12
(
2
), p.
e1004737
.
38.
Hu
,
X.
,
Murray
,
W. M.
, and
Perreault
,
E. J.
,
2011
, “
Muscle Short-Range Stiffness Can Be Used to Estimate the Endpoint Stiffness of the Human Arm
,”
J. Neurophysiol.
,
105
(
4
), pp.
1633
1641
.
39.
Valero-Cuevas
,
F. J.
,
Johanson
,
M. E.
, and
Towles
,
J. D.
,
2003
, “
Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May Be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters
,”
J. Biomech.
,
36
(
7
), pp.
1019
1030
.
40.
Valero-Cuevas
,
F. J.
,
2005
, “
An Integrative Approach to the Biomechanical Function and Neuromuscular Control of the Fingers
,”
J. Biomech.
,
38
(
4
), pp.
673
684
.
41.
Valero-Cuevas
,
F. J.
,
Hoffmann
,
H.
,
Kurse
,
M. U.
,
Kutch
,
J. J.
, and
Theodorou
,
E. A.
,
2011
, “
Computational Models for Neuromuscular Function
,”
IEEE Rev. Biomed. Eng.
,
2
, pp.
110
135
.
42.
Saul
,
K. R.
,
Hu
,
X.
,
Goehler
,
C. M.
,
Vidt
,
M. E.
,
Daly
,
M.
,
Velisar
,
A.
, and
Murray
,
W. M.
,
2014
, “
Benchmarking of Dynamic Simulation Predictions in Two Software Platforms Using an Upper Limb Musculoskeletal Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(13), pp. 1445–1458.
43.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open Source to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Bio-Med. Eng.
,
54
(
11
), pp.
1940
1950
.
44.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
What is a Moment Arm? Calculating Muscle Effectiveness in Biomechanical Models Using Generalized Coordinates
,”
ASME
Paper No. DETC2013-13633.
45.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London B
,
126
(
843
), pp.
136
195
.
46.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
21005
.
47.
Cui
,
L.
,
Perreault
,
E. J.
,
Maas
,
H.
, and
Sandercock
,
T. G.
,
2008
, “
Modeling Short-Range Stiffness of Feline Lower Hindlimb Muscles
,”
J. Biomech.
,
41
(
9
), pp.
1945
1952
.
48.
van Eesbeek
,
S.
,
de Groot
,
J. H.
,
van der Helm
,
F. C. T.
, and
de Vlugt
,
E.
,
2010
, “
In Vivo Estimation of the Short-Range Stiffness of Cross-Bridges From Joint Rotation
,”
J. Biomech.
,
43
(
13
), pp.
2539
2547
.
49.
Zonnino
,
A.
, and
Sergi
,
F.
,
2017
, “
Using Musculoskeletal Models to Estimate the Passive Joint Stiffness
,”
41st Annual Meeting of the American Society of Biomechanics
, Boulder, CO, Aug. 8–11, pp.
8
9
.
50.
Dornay
,
M.
,
Mussa-Ivaldi
,
F. A.
,
McIntyre
,
J.
, and
Bizzi
,
E.
,
1993
, “
Stability Constraints for the Distributed Control of Motor Behavior
,”
Neural Networks
,
6
(
8
), pp.
1045
1059
.
51.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Acosta
,
A. M.
,
1999
, “
Multiple-Input, Multiple-Output System Identification for Characterization of Limb Stiffness Dynamics
,”
Biol. Cybern.
,
80
(
5
), pp.
327
337
.
52.
Seth
,
A.
,
Sherman
,
M.
,
Reinbolt
,
J. A.
, and
Delp
,
S. L.
,
2011
, “
OpenSim: A Musculoskeletal Modeling and Simulation Framework for in Silico Investigations and Exchange
,”
Procedia IUTAM
,
2
, pp.
212
232
.
53.
Berens
,
P.
,
2009
, “
CircStat: A MATLAB Toolbox for Circular Statistics
,”
J. Stat. Software
,
31
(
10
), pp. 1–21.
54.
Seegmiller
,
D. B.
,
Eggett
,
D. L.
, and
Charles
,
S. K.
,
2016
, “
The Effect of Common Wrist Orthoses on the Stiffness of Wrist Rotations
,”
J. Rehabil. Res. Develop.
,
53
(
6
), pp.
1151
1166
.
55.
Park
,
K.
,
Chang
,
P. H.
, and
Kang
,
S. H.
,
2017
, “
In Vivo Estimation of Human Forearm and Wrist Dynamic Properties
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
5
), pp.
436
446
.
56.
Drake
,
W. B.
, and
Charles
,
S. K.
,
2014
, “
Passive Stiffness of Coupled Wrist and Forearm Rotations
,”
Ann. Biomed. Eng.
,
42
(
9
), pp.
1853
1866
.
57.
Johns
,
R. J.
, and
Wright
,
V.
,
1963
, “
Relative Importance of Various Tissues in Joint Stiffness
,”
J. Am. Med. Assoc.
,
183
(
2
), p.
189
.
58.
Kuo
,
P. H.
, and
Deshpande
,
A. D.
,
2012
, “
Muscle-Tendon Units Provide Limited Contributions to the Passive Stiffness of the Index Finger Metacarpophalangeal Joint
,”
J. Biomech.
,
45
(
15
), pp.
2531
2538
.
You do not currently have access to this content.