Cardiovascular diseases (CVDs) are the number one cause of death globally. Arterial endothelial cell (EC) dysfunction plays a key role in many of these CVDs, such as atherosclerosis. Blood flow-induced wall shear stress (WSS), among many other pathophysiological factors, is known to significantly contribute to EC dysfunction. The present study reports an in vitro investigation of the effect of quantified WSS on ECs, analyzing the EC morphometric parameters and cytoskeletal remodeling. The effects of four different flow cases (low steady laminar (LSL), medium steady laminar (MSL), nonzero-mean sinusoidal laminar (NZMSL), and laminar carotid (LCRD) waveforms) on the EC area, perimeter, shape index (SI), angle of orientation, F-actin bundle remodeling, and platelet endothelial cell adhesion molecule-1 (PECAM-1) localization were studied. For the first time, a flow facility was fully quantified for the uniformity of flow over ECs and for WSS determination (as opposed to relying on analytical equations). The SI and angle of orientation were found to be the most flow-sensitive morphometric parameters. A two-dimensional fast Fourier transform (2D FFT) based image processing technique was applied to analyze the F-actin directionality, and an alignment index (AI) was defined accordingly. Also, a significant peripheral loss of PECAM-1 in ECs subjected to atheroprone cases (LSL and NZMSL) with a high cell surface/cytoplasm stain of this protein is reported, which may shed light on of the mechanosensory role of PECAM-1 in mechanotransduction.

References

References
1.
Berliner
,
J. A.
,
Navab
,
M.
,
Fogelman
,
A. M.
,
Frank
,
J. S.
,
Demer
,
L. L.
,
Edwards
,
P.
,
Watson
,
A. D.
, and
Lusis
,
A. J.
,
1995
, “
Atherosclerosis: Basic Mechanisms, Oxidation, Inflammation, and Genetics
,”
Circulation
,
91
(
9
), pp.
2488
2496
.
2.
Ross
,
R.
,
1999
, “
Atherosclerosis: An Inflammatory Disease
,”
New Engl. J. Med.
,
340
(
2
), pp.
115
126
.
3.
Ferrières
,
J.
,
2009
, “
Effects on Coronary Atherosclerosis by Targeting Low-Density Lipoprotein Cholesterol With Statins
,”
Am. J. Cardiovasc. Drugs
,
9
(
2
), pp.
109
115
.
4.
Kemeny
,
S. F.
,
Figueroa
,
D. S.
, and
Clyne
,
A. M.
,
2013
, “
Hypo- and Hyperglycemia Impair Endothelial Cell Actin Alignment and Nitric Oxide Synthase Activation in Response to Shear Stress
,”
PLoS One
,
8
(
6
), p.
e66176
.
5.
Estrada
,
S.
,
Giridharan
,
G. A.
,
Nguyen
,
M.
,
Roussel
,
T. J.
,
Shakeri
,
M.
,
Parichehreh
,
V.
,
Prabhu
,
S. D.
, and
Sethu
,
P.
,
2011
, “
Endothelial Cell Culture Model for Replication of Physiological Profiles
,”
Anal. Chem.
,
83
(
8
), pp.
3170
3177
.
6.
Chiu
,
J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium; Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.
7.
Davis
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
(
3
), pp.
519
560
.
8.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
3
), pp.
1209
1224
.
9.
Li
,
S.
,
Huang
,
N. F.
, and
Hsu
,
S.
,
2005
, “
Mechanotransduction in Endothelial Cell Migration
,”
J. Cell Biochem.
,
96
(
6
), pp.
1110
1126
.
10.
Eyckmans
,
J.
,
Boudou
,
T.
, and
Chen
,
C. S.
,
2011
, “
A Hitchhiker's Guide to Mechanobiology
,”
Dev. Cell
,
21
(
1
), pp.
35
47
.
11.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation; Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Throm. Vasc. Biol.
,
5
, pp.
293
302
.
12.
Dewey
,
C. F.
, and
Bussolari
,
S. R.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
177
185
.
13.
Nerem
,
R. M.
,
Levesque
,
M. J.
, and
Cornhill
,
J. F.
,
1981
, “
Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
172
176
.
14.
Davies
,
P. F.
,
Reidy
,
M. A.
,
Goode
,
T. B.
, and
Bowyer
,
D.
,
1976
, “
Scanning Electron Microscopy in the Elevation of Endothelial Integrity of the Fatty Lesion in Atherosclerosis
,”
Atherosclerosis
,
25
(
1
), pp.
125
130
.
15.
Flaherty
,
J. T.
,
Pierce
,
J. E.
,
Ferrans
,
V. J.
,
Patel
,
D. J.
,
Tucker
,
W. K.
, and
Fry
,
D.
,
1972
, “
Endothelial Nuclear Patterns in the Canine Arterial Tree With Particular Reference to Hemodynamic Events
,”
Circ. Res.
,
30
(
1
), pp.
23
33
.
16.
Dick
,
M.
,
Joank
,
P.
, and
Leask
,
R. L.
,
2013
, “
Statin Therapy Influences Endothelial Cell Morphology and F-Actin Cytoskeleton Structure When Exposed to Static and Laminar Shear Stress Conditions
,”
Life Sci.
,
92
(
14–16
), pp.
859
865
.
17.
Varma
,
S.
, and
Voldman
,
J.
,
2015
, “
A Cell-Based Sensor of Fluid Shear Stress for Microfluidics
,”
Lab Chip
,
1563–1573
(
6
), p.
15
.
18.
Dewey
,
C. F.
,
1984
, “
Effects of Fluid Flow on Living Vascular Cells
,”
ASME J. Biomech. Eng.
,
106
(
1
), pp.
31
35
.
19.
Velasco
,
V.
,
Gruenthal
,
M.
,
Zusstone
,
E.
,
Thomas
,
J.
,
Berson
,
R.
,
Keynton
,
R.
, and
Williams
,
S.
,
2016
, “
An Orbital Shear Platform for Real-Time, In Vitro Endothelium Characterization
,”
Biotechnol. Bioeng.
,
113
(
6
), pp.
1336
1344
.
20.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelail Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
170
(
4
), pp.
341
347
.
21.
Simmers
,
M. B.
,
Pryor
,
A. W.
, and
Blackman
,
B. R.
,
2007
, “
Arterial Shear Stress Regulated Endothelail Cell-Directed Migration, Polarity and Morphology
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
3
), pp.
H1937
H1946
.
22.
Gong
,
X.
,
Liu
,
H.
,
Ding
,
X.
, and
Fan
,
Y.
,
2014
, “
Physiological Pulsatile Flow Culture Conditions to Generate Functional Endothelium on a Sulfated Silk Fibroin Nanofibrous Scaffold
,”
Biomaterials
,
35
(
17
), pp.
4782
4791
.
23.
Levesque
,
M. J.
,
Sprague
,
E. A.
,
Schwartz
,
C. J.
, and
Nerem
,
R. M.
,
1989
, “
The Influence of Shear Stress on Cultured Vascular Endothelial Cells: The Stress Response of an Anchorage-Dependent Mammalian Cell
,”
Biotechnol. Prog.
,
5
(
1
), pp.
1
8
.
24.
Helmlinger
,
G.
,
Geiger
,
R. V.
,
Schreck
,
S.
, and
Nerem
,
R. M.
,
1991
, “
Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
,”
ASME J. Biomech. Eng.
,
113
(
2
), pp.
123
131
.
25.
Vozzi
,
F.
,
Bianchi
,
F.
,
Ahluwali
,
A.
, and
Domenici
,
C.
,
2014
, “
Hydrostatic Pressure and Shear Stress Affect Endothelin-1 and Nitric Oxide Release by Endothelial Cells in Bioreactors
,”
Biotechnol. J.
,
9
(
1
), pp.
146
154
.
26.
Galbraith
,
C. G.
,
Skalak
,
R.
, and
Chien
,
S.
,
1998
, “
Shear Stress Induces Spatial Reorganization of the Endothelial Cell Cytoskeleton
,”
Cell Motil. Cytoskel.
,
40
(
4
), pp.
317
330
.
27.
Schnittler
,
H.-J.
,
Franke
,
R. P.
,
Akbay
,
U.
,
Mrowietz
,
C.
, and
Drenckhahn
,
D.
,
1993
, “
Improved In Vitro Rheological System for Studying the Effect of Fluid Shear Stress on Cultured Cells
,”
Am. J. Physiol.
,
265
, pp.
289
298
.
28.
Osawa
,
M.
,
Masuda
,
M.
,
Kusano
,
K.-I.
, and
Fujiwara
,
K.
,
2002
, “
Evidence for the Role of Platelet Endothelial Cell Adhesion Molecule-1 in Endothelail Cell Mechanosignal Transduction: Is It a Mechanoresponsive Molecule?
,”
J. Cell Biol.
,
158
(
4
), pp.
773
775
.
29.
Schnittler
,
H.-J.
,
Puschel
,
B.
, and
Drenckhahn
,
D.
,
1997
, “
Role of Cadherins and Plakoglobin in Interendothelial Adhesion Under Resting Condition and Shear Stress
,”
Am. J. Physiol.
,
273
(
5
), pp.
H2396
H2405
.
30.
Chiu
,
J.-J.
,
Chen
,
L.-J.
,
Chen
,
C.-N.
,
Lee
,
P.-L.
, and
Lee
,
C.-I.
,
2004
, “
A Model for Studying the Effect of Shear Stress on Interactions Between Vascular Endothelial Cells and Smooth Muscle Cells
,”
J. Biomech.
,
37
(
4
), pp.
531
539
.
31.
Soghomonians
,
A.
,
Thirkill
,
T.
,
Mariano
,
N.
,
Barakat
,
A.
, and
Douglas
,
G.
,
2004
, “
Effect of Aqueous Tobacco Smoke Extract and Shear Stress on PECAM-1 Expression and Cell Motility in Human Uterine Endothelial Cells
,”
Toxicol. Sci.
,
81
(
2
), pp.
408
418
.
32.
Avari
,
H.
,
Savory
,
E.
, and
Rogers
,
K. A.
,
2016
, “
An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells
,”
Cardiovasc. Eng. Technol.
,
7
(
1
), pp.
44
57
.
33.
Poirier
,
P.
,
2014
, “
Exercise, Heart Rate Variability, and Longevity: The Cocoon Mystery?
,”
Circulation
,
129
(
21
), pp.
2085
2087
.
34.
Privratsky
,
J. R.
, and
Newman
,
P. J.
,
2014
, “
PECAM-1: Regulator of Endothelial Junctional Integrity
,”
Cell Tissue Res.
,
355
(
3
), pp.
607
619
.
35.
Dejana
,
E.
,
2004
, “
Endothelial Cell-Cell Junctions: Happy Together
,”
Nat. Rev. Mol. Cell Biol.
,
5
(
4
), pp.
261
70
.
36.
Newman
,
P. J.
,
1997
, “
The Biology of PECAM-1
,”
J. Clin. Invest.
,
99
(
1
), pp.
3
8
.
37.
Baldwin
,
H. S.
,
Shen
,
H. M.
,
Yan
,
H. C.
,
DeLiss
,
H. M.
,
Chunh
,
A.
,
Mickanin
,
C.
,
Trask
,
T.
,
Kirschbuaum
,
N. E.
,
Newman
,
P. J.
, and
Albelda
,
S. M.
,
1994
, “
Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31): Alternatively Spliced, Functionally Distinct Isoforms Expressed During Mammalian Cardiovascular Development
,”
Development
,
120
(
9
), pp.
2539
2553
.https://www.ncbi.nlm.nih.gov/pubmed/7956830
38.
Muller
,
W. A.
,
2011
, “
Mechanisms of Leukocyte Transendothelial Migration
,”
Annu. Rev. Pathol.
,
6
(
1
), pp.
323
344
.
39.
Leick
,
M.
,
Azcutia
,
V.
,
Newton
,
G.
, and
Luscinskas
,
F. W.
,
2014
, “
Leukocyte Recruitment in Inflammation: Basic Concepts and New Mechanistic Insights Based on New Models and Microscopic Imaging Technologies
,”
Cell Tissue Res.
,
355
(
3
), pp.
647
656
.
40.
Tzima
,
E.
,
Irani-Tehrani
,
M.
,
Kiosses
,
W. B.
,
Dejana
,
E.
,
Schultz
,
D. A.
,
Engelhardt
,
B.
,
Cao
,
G.
,
DeLisser
,
H.
, and
Schwartz
,
M. A.
,
2005
, “
A Mechanosensory Complex That Mediates the Endothelial Cell Response to Fluid Shear Stress
,”
Nature
,
437
(
7057
), pp.
426
431
.
41.
Coon
,
B.
,
Baeyeus
,
N.
, and
Han
,
J.
,
2015
, “
Intramembrane Binding of VE-Cadherin to VEGFR2 and VEGFR3 Assembles the Endothelial Mechanosensory Complex
,”
J. Cell Biol.
,
708
(
7
), pp.
975
986
.
42.
Meza
,
D.
,
Shanmugavelayudam
,
S. K.
,
Mendoza
,
A.
,
Sanchez
,
C.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2017
, “
Platelets Modulate Endothelial Cell Response to Dynamic Shear Stress Through PECAM-1
,”
Thromb. Res.
,
150
, pp.
44
50
.
43.
Puleri
,
R. S.
,
dela Paz
,
G. N.
,
Adams
,
D.
,
Chattopadhyay
,
M.
,
Cancel
,
L.
,
Ebong
,
E.
,
Orr
,
W. A.
,
Frangos
,
A. J.
, and
Tarbell
,
M. J.
, 2017, “
Fluid Shear Stress Induces Upregulation of COX-2 And PGI2 Release in Endothelial Cells via a Pathway Involving PECAM-1, PI3K, FAK, and p38
,”
Am. J. Physiol.-Heart, Circ. Physiol.
,
312
(
3
), pp. h485–h500.
44.
Conway
,
D. E.
,
Williams
,
M. R.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
,
2010
, “
Endothelial Cell Responses to Atheroprone Flow Are Driven by Two Separate Flow Components: Low Time-Average Shear Stress and Fluid Flow Reversal
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
2
), pp.
H367
H374
.
45.
Avari
,
H.
,
Rogers
,
K. A.
, and
Savory
,
E.
,
2018
, “
Wall Shear Stress Determination in a Small Scale Parallel Plate Flow Chamber (PPFC) Using Laser Doppler Velocimetry (LDV) Under Laminar, Pulsatile and Low-Reynolds Number Turbulent Flows
,”
ASME J. Fluids. Eng.
,
140
(
6
), p.
061404
.
46.
Rogers
,
K. A.
,
Boden
,
P.
,
Kalnins
,
V. I.
, and
Gotlieb
,
A. I.
,
1986
, “
The Distribution of Centrosomes in Endothelial Cells of Non-Wounded and Wounded Aortic Organ Cultures
,”
Cell Tissue Res.
,
243
(
2
), pp.
223
227
.
47.
Ayres
,
C. E.
,
Shekharjha
,
B.
,
Meredith
,
H.
,
Bowman
,
J. R.
,
Bowlin
,
G. R.
, and
Henderson
,
S. C.
,
2008
, “
Measuring Fiber Alignment in Electrospun Scaffolds: A User's Guide to the 2D Fast Fourier Transform Approach
,”
J. Biomater. Sci.
,
19
(
5
), pp.
603
621
.
48.
van der Meel
,
A. D.
,
Poot
,
A. A.
,
Feijen
,
J.
, and
Vermes
,
I.
,
2010
, “
Analyzing Shear-Induced Alignment of Actin Filaments in Endothelial Cells With a Microfluid Assay
,”
Biomicrofluidics
,
4
, p.
011103
.
49.
DeStefano
,
J. G.
,
Williams
,
A.
,
Wnorowski
,
A.
, and
Yimam
,
N. S.
,
2017
, “
Real-Time Quantification of Endothelial Response to Shear Stress and Vascular Modulators
,”
Integr. Biol. (Camb)
,
9
(
4
), pp.
362
374
.
50.
Reinitz
,
A.
,
DeStefano
,
J.
,
Ye
,
M.
,
Wong
,
A. D.
, and
Searson
,
P. C.
,
2015
, “
Human Brain Microvascular Endothelial Cells Resist Elongation Due to Shear Stress
,”
Microvasc. Res.
,
99
, pp.
8
18
.
51.
Davies
,
P. F.
,
2009
, “
Hemodynamic Shear Stress and the Endothelium in Cardiovascular Pathophysiology
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
6
(
1
), pp.
16
26
.
52.
Peng
,
X.
,
Recchia
,
F. A.
,
Byrne
,
B. J.
,
Wittstein
,
I. S.
,
Zeigelstein
,
R. C.
,
Kass
,
D. A.
, and
Ryoo
,
S.
,
2000
, “
In Vitro System to Study Realistic Pulsatile Flow and Stretch Signaling in Cultured Vascular Cells
,”
Am. J. Cell Physiol.
,
279
(
3
), pp.
C797
C805
.
53.
Farcas
,
M. A.
,
Rouleau
,
L.
,
Fraser
,
R.
, and
Leasl
,
R. L.
,
2009
, “
Development of 3-D, In Vitro, Endothelial Culture Models for the Study of Coronary Artery Disease
,”
Biomed. Eng. Online
,
8
, pp.
1
11
.
54.
Thomas
,
A.
,
Ou-Yang
,
H.
,
Lowe-Krentz
,
L.
,
Muzykantov
,
V.
, and
Liu
,
Y.
,
2016
, “
Biomimetic Channel Modeling Local Vascular Dynamics for Pro-Inflammatory Endothelial Changes
,”
Biomicrofluidics
,
10
(
1
), p.
014101
.
55.
Kataoka
,
N.
,
Ujita
,
S.
, and
Sato
,
M.
,
1998
, “
Effect of Flow Direction on the Morphological Responses of Cultured Bovine Endothelail Cells
,”
Med. Biol. Eng. Comput.
,
36
(
1
), pp.
122
128
.
56.
Voyvodic
,
L. P.
,
Min
,
D.
, and
Baker
,
A. B.
,
2012
, “
A Multichannel Damped Flow System for Studies on Shear Stress-Mediated Mechanotransduction
,”
Lab Chip
,
12
(
18
), pp.
3322
3330
.
57.
Katoh
,
K.
,
Kano
,
Y.
, and
Ookawara
,
S.
,
2008
, “
Role of Stress Fibers and Focal Adhesions as a Mediator for Mechano-Signal Transduction in Endothelial Cells In Situ
,”
Vasc. Health Risk Manage.
,
4
(
6
), pp.
1273
1282
.
58.
Gavara
,
N.
, and
Chadwick
,
R. S.
,
2016
, “
Relationship Between Cell Stiffness and Stress Fiber Amount, Assessed by Simultaneous Atomic Force Microscopy and Live-Cell Fluorescence Imaging
,”
Biomech. Model Mechanobiol.
,
15
, pp.
511
523
.
59.
Rouleau
,
L.
,
Farcas
,
M.
,
Tardif
,
J. C.
,
Mongrain
,
R.
, and
Leask
,
R. L.
,
2010
, “
Endothelial Cell Morphologic Response to Asymmetric Stenosis Hemodynamics: Effects of Spatial Wall Shear Stress Gradients
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081013
.
60.
Woodfin
,
A.
,
Voisin
,
M.
, and
Nourshargh
,
S.
,
2007
, “
PECAM-1: A Multifunctional Molecule in Inflammation and Vascular Biology
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
(
12
), pp.
1870
1878
.
61.
Conway
,
D. E.
,
Breckennridge
,
M. T.
,
Hinde
,
E.
,
Gratton
,
E.
, and
Chen
,
C. S.
,
2013
, “
Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension Across VE-Cadherin and PECAM-1
,”
Curr. Biol.
,
23
(
11
), pp.
1024
1030
.
62.
Conway
,
D. E.
, and
Schwartz
,
M. A.
,
2015
, “
Mechanotransduction of Shear Stress Occurs Through Changes in VE-Cadherin and PECAM-1 Tension: Implications for Cell Migration
,”
Cell Adh. Migr.
,
9
(
5
), pp.
335
339
.
You do not currently have access to this content.