A multiscale model for mineralized collagen fibril (MCF) is proposed by taking into account the uncertainties associated with the geometrical properties of the mineral phase and its distribution in the organic matrix. The asymptotic homogenization approach along with periodic boundary conditions has been used to derive the effective elastic moduli of bone's nanostructure at two hierarchical length scales, namely: microfibril (MF) and MCF. The uncertainties associated with the mineral plates have been directly included in the finite element mesh by randomly varying their sizes and structural arrangements. A total of 100 realizations for the MCF model with random distribution have been generated using an in-house MATLAB code, and Monte Carlo type of simulations have been performed under tension load to obtain the statistical equivalent modulus. The deformation response has been studied in both small (10%) and large (10%) strain regimes. The stress transformation mechanism has also been explored in MF which showed stress relaxation in the organic phase upon different stages of mineralization. The elastic moduli for MF under small and large strains have been obtained as 1.88 and 6.102 GPa, respectively, and have been used as an input for the upper scale homogenization procedure. Finally, the characteristic longitudinal moduli of the MCF in the small and large strain regimes are obtained as 4.08 ± 0.062 and 12.93 ± 0.148 GPa, respectively. All the results are in good agreement to those obtained from previous experiments and molecular dynamics (MD) simulations in the literature with a significant reduction in the computational cost.

References

References
1.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature's Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.
2.
Oyen
,
M. L.
,
2008
, “
The Materials Science of Bone: Lessons From Nature for Biomimetic Materials Synthesis
,”
MRS Bull.
,
33
(
1
), pp.
49
55
.
3.
Stephen
,
W.
, and
Wolfie
,
T.
,
1992
, “
Bone Structure: From Angstroms to Microns
,”
FASEB J.
,
6
(
3
), pp.
879
885
.
4.
Landis
,
W. J.
,
1995
, “
The Strength of a Calcified Tissue Depends in Part on the Molecular Structure and Organization of Its Constituent Mineral Crystals in Their Organic Matrix
,”
Bone
,
16
(
5
), pp.
533
544
.
5.
Rho
,
J. Y.
,
Kuhn-Spearing
,
L.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
(
2
), pp.
92
102
.
6.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
7.
Raspanti
,
M.
,
Congiu
,
T.
, and
Guizzardi
,
S.
,
2001
, “
Tapping-Mode Atomic Force Microscopy in Fluid of Hydrated Extracellular Matrix
,”
Matrix Biol.
,
20
(
8
), pp.
601
604
.
8.
Barkaoui
,
A.
,
Chamekh
,
A.
,
Merzouki
,
T.
,
Hambli
,
R.
, and
Mkaddem
,
A.
,
2014
, “
Multiscale Approach Including Microfibril Scale to Assess Elastic Constants of Cortical Bone Based on Neural Network Computation and Homogenization Method
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
3
), pp.
318
338
.
9.
Olszta
,
M. J.
,
Cheng
,
X.
,
Jee
,
S. S.
,
Kumar
,
R.
,
Kim
,
Y. Y.
,
Kaufman
,
M. J.
,
Douglas
,
E. P.
, and
Gower
,
L. B.
,
2007
, “
Bone Structure and Formation: A New Perspective
,”
Mater. Sci. Eng. R Rep.
,
58
(
3–5
), pp.
77
116
.
10.
Currey
,
J. D.
,
2003
, “
Role of Collagen and Other Organics in the Mechanical Properties of Bone
,”
Osteoporosis Int.
,
14
(Suppl. 5), pp.
29
36
.
11.
Boskey
,
A. L.
,
2013
, “
Bone Composition: Relationship to Bone Fragility and Antiosteoporotic Drug Effects
,”
Bonekey Rep.
,
2
, pp.
1
11
.
12.
Buehler
,
M. J.
,
2008
, “
Nanomechanics of Collagen Fibrils Under Varying Cross-Link Densities: Atomistic and Continuum Studies
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
1
), pp.
59
67
.
13.
Currey
,
J. D.
,
1984
, “
Effects of Differences in Mineralization on the Mechanical Properties of Bone
,”
Philos. Trans. R. Soc. London B
,
304
(
1121
), pp.
509
518
.
14.
Bembey
,
K. A.
,
Koonjul
,
V.
,
Bushby
,
J. A.
,
Ferguson
,
L. V.
, and
Boyde
,
A.
,
2005
, “
Contribution of Collagen, Mineral and Water Phases to the Nanomechanical Properties of Bone
,”
MRS Proc.
,
844
, pp.
1
6
.
15.
Samuel
,
J.
,
Park
,
J. S.
,
Almer
,
J.
, and
Wang
,
X.
,
2016
, “
Effect of Water on Nanomechanics of Bone is Different Between Tension and Compression
,”
J. Mech. Behav. Biomed. Mater.
,
57
, pp.
128
138
.
16.
Pradhan
,
S. M.
,
Katti
,
K. S.
, and
Katti
,
D. R.
,
2014
, “
Multiscale Model of Collagen Fibril in Bone: Elastic Response
,”
J. Eng. Mech.
,
140
(
3
), pp.
454
461
.
17.
Depalle
,
B.
,
Qin
,
Z.
,
Shefelbine
,
S. J.
, and
Buehler
,
M. J.
,
2015
, “
Influence of Cross-Link Structure, Density and Mechanical Properties in the Mesoscale Deformation Mechanisms of Collagen Fibrils
,”
J. Mech. Behav. Biomed. Mater.
,
52
, pp.
1
13
.
18.
Oftadeh
,
R.
,
Entezari
,
V.
,
Sporri
,
G.
,
Villa-Camacho
,
J. C.
,
Krigbaum
,
H.
,
Strawich
,
E.
,
Graham
,
L.
,
Rey
,
C.
,
Chiu
,
H.
,
Muller
,
R.
,
Hashemi
,
H. N.
,
Vaziri
,
A.
, and
Nazarian
,
A.
,
2015
, “
Hierarchical Analysis and Multi-Scale Modelling of Rat Cortical and Trabecular Bone
,”
J. R. Soc. Interface
,
12
(
106
), p.
20150070
.
19.
Yoon
,
Y. J.
, and
Cowin
,
S. C.
,
2008
, “
The Estimated Elastic Constants for a Single Bone Osteonal Lamella
,”
Biomech. Model. Mechanobiol.
,
7
(
1
), pp.
1
11
.
20.
Fritsch
,
A.
, and
Hellmich
,
C.
,
2007
, “
Universal' Microstructural Patterns in Cortical and Trabecular, Extracellular and Extravascular Bone Materials: Micromechanics-Based Prediction of Anisotropic Elasticity
,”
J. Theor. Biol.
,
244
(
4
), pp.
597
620
.
21.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Ballarini
,
R.
,
2013
, “
Modeling and Measuring Visco-Elastic Properties: From Collagen Molecules to Collagen Fibrils
,”
Int. J. Non Linear Mech.
,
56
, pp.
25
33
.
22.
Wallace
,
R. J.
,
Pankaj
,
P.
, and
Simpson
,
A. H. R. W.
,
2013
, “
The Effect of Strain Rate on the Failure Stress and Toughness of Bone of Different Mineral Densities
,”
J. Biomech.
,
46
(
13
), pp.
2283
2287
.
23.
Vercher
,
A.
,
Giner
,
E.
,
Arango
,
C.
,
Tarancón
,
J. E.
, and
Fuenmayor
,
F. J.
,
2014
, “
Homogenized Stiffness Matrices for Mineralized Collagen Fibrils and Lamellar Bone Using Unit Cell Finite Element Models
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
437
449
.
24.
Akkus
,
O.
,
2005
, “
Elastic Deformation of Mineralized Collagen Fibrils: An Equivalent Inclusion Based Composite Model
,”
ASME J. Biomech. Eng.
,
127
(
3
), p.
383
.
25.
Nair
,
A. K.
,
Gautieri
,
A.
,
Chang
,
S.-W.
, and
Buehler
,
M. J.
,
2013
, “
Molecular Mechanics of Mineralized Collagen Fibrils in Bone
,”
Nat. Commun.
,
4
, pp.
1724
1729
.
26.
Van Der Rijt
,
J. A. J.
,
Van Der Werf
,
K. O.
,
Bennink
,
M. L.
,
Dijkstra
,
P. J.
, and
Feijen
,
J.
,
2006
, “
Micromechanical Testing of Individual Collagen Fibrils
,”
Macromol. Biosci.
,
6
(
9
), pp.
699
702
.
27.
Yang
,
L.
,
van der Werf
,
K. O.
,
Dijkstra
,
P. J.
,
Feijen
,
J.
, and
Bennink
,
M. L.
,
2012
, “
Micromechanical Analysis of Native and Cross-Linked Collagen Type I Fibrils Supports the Existence of Microfibrils
,”
J. Mech. Behav. Biomed. Mater.
,
6
, pp.
148
158
.
28.
Fratzl
,
P.
,
Fratzl-Zelman
,
N.
, and
Klaushofer
,
K.
,
1993
, “
Collagen Packing and Mineralization. An X-Ray Scattering Investigation of Turkey Leg Tendon
,”
Biophys. J.
,
64
(
1
), pp.
260
266
.
29.
Fratzl
,
P.
,
Misof
,
K.
,
Zizak
,
I.
,
Rapp
,
G.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
,
1998
, “
Fibrillar Structure and Mechanical Properties of Collagen
,”
J. Struct. Biol.
,
122
(
1–2
), pp.
119
122
.
30.
Shen
,
Z. L.
,
Dodge
,
M. R.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2008
, “
Stress-Strain Experiments on Individual Collagen Fibrils
,”
Biophys. J.
,
95
(
8
), pp.
3956
3963
.
31.
Hang
,
F.
, and
Barber
,
A. H.
,
2011
, “
Nano-Mechanical Properties of Individual Mineralized Collagen Fibrils From Bone Tissue
,”
J. R. Soc. Interface
,
8
(
57
), pp.
500
505
.
32.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2011
, “
Hierarchical Structure and Nanomechanics of Collagen Microfibrils From the Atomistic Scale Up
,”
Nano Lett.
,
11
(
2
), pp.
757
766
.
33.
Tang
,
Y.
,
Ballarini
,
R.
,
Buehler
,
M. J.
, and
Eppell
,
S. J.
,
2010
, “
Deformation Micromechanisms of Collagen Fibrils Under Uniaxial Tension
,”
J. R. Soc. Interface
,
7
(
46
), pp.
839
850
.
34.
Zhou
,
Z.
,
Qian
,
D.
, and
Minary-Jolandan
,
M.
,
2017
, “
Clustering of Hydroxyapatite on a Super-Twisted Collagen Microfibril Under Mechanical Tension
,”
J. Mater. Chem. B
,
5
(
12
), pp.
2235
2244
.
35.
Parnell
,
W. J.
,
Vu
,
M. B.
,
Grimal
,
Q.
, and
Naili
,
S.
,
2012
, “
Analytical Methods to Determine the Effective Mesoscopic and Macroscopic Elastic Properties of Cortical Bone
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
883
901
.
36.
Nikolov
,
S.
, and
Raabe
,
D.
,
2008
, “
Hierarchical Modeling of the Elastic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization
,”
Biophys. J.
,
94
(
11
), pp.
4220
4232
.
37.
Qwamizadeh
,
M.
,
Zhang
,
Z.
,
Zhou
,
K.
, and
Zhang
,
Y. W.
,
2016
, “
Protein Viscosity, Mineral Fraction and Staggered Architecture Cooperatively Enable the Fastest Stress Wave Decay in Load-Bearing Biological Materials
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
339
355
.
38.
Parnell
,
W. J.
, and
Grimal
,
Q.
,
2009
, “
The Influence of Mesoscale Porosity on Cortical Bone Anisotropy. Investigations Via Asymptotic Homogenization
,”
J. R. Soc. Interface
,
6
(
30
), pp.
97
109
.
39.
Jäger
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
.
40.
Yuan
,
F.
,
Stock
,
S. R.
,
Haeffner
,
D. R.
,
Almer
,
J. D.
,
Dunand
,
D. C.
, and
Brinson
,
L. C.
,
2011
, “
A New Model to Simulate the Elastic Properties of Mineralized Collagen Fibril
,”
Biomech. Model. Mechanobiol.
,
10
(
2
), pp.
147
160
.
41.
Abueidda
,
D. W.
,
Sabet
,
F. A.
, and
Jasiuk
,
I. M.
,
2017
, “
Modeling of Stiffness and Strength of Bone at Nanoscale
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051006
.
42.
Barkaoui
,
A.
,
Tlili
,
B.
,
Vercher-Martínez
,
A.
, and
Hambli
,
R.
,
2016
, “
A Multiscale Modelling of Bone Ultrastructure Elastic Proprieties Using Finite Elements Simulation and Neural Network Method
,”
Comput. Methods Programs Biomed.
,
134
, pp.
69
78
.
43.
Vercher-Martínez
,
A.
,
Giner
,
E.
,
Arango
,
C.
, and
Javier Fuenmayor
,
F.
,
2015
, “
Influence of the Mineral Staggering on the Elastic Properties of the Mineralized Collagen Fibril in Lamellar Bone
,”
J. Mech. Behav. Biomed. Mater.
,
42
, pp.
243
256
.
44.
Lai
,
Z. B.
, and
Yan
,
C.
,
2017
, “
Mechanical Behaviour of Staggered Array of Mineralised Collagen Fibrils in Protein Matrix: Effects of Fibril Dimensions and Failure Energy in Protein Matrix
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
236
247
.
45.
Lai
,
Z. B.
,
Bai
,
R.
, and
Yan
,
C.
,
2017
, “
Effect of Nano-Scale Constraint on the Mechanical Behaviour of Osteopontin–Hydroxyapatite Interfaces
,”
Comput. Mater. Sci.
,
126
, pp.
59
65
.
46.
Hambli
,
R.
, and
Barkaoui
,
A.
,
2012
, “
Physically Based 3D Finite Element Model of a Single Mineralized Collagen Microfibril
,”
J. Theor. Biol.
,
301
, pp.
28
41
.
47.
Barkaoui
,
A.
, and
Hambli
,
R.
,
2014
, “
Nanomechanical Properties of Mineralised Collagen Microfibrils Based on Finite Elements Method: Biomechanical Role of Cross-Links
,”
Comput. Methods Biomech. Biomed. Engin.
,
17
(
14
), pp.
1590
1601
.
48.
Barkaoui
,
A.
,
Hambli
,
R.
, and
Tavares
,
J. M. R. S.
,
2015
, “
Effect of Material and Structural Factors on Fracture Behaviour of Mineralised Collagen Microfibril Using Finite Element Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1181
1190
.
49.
Awasthi
,
A.
,
Sharma
,
R.
, and
Ghosh
,
R.
,
2018
, “
Application of Embedded Element Approach to Nanostructure of Bone
,”
Symposium and Workshop for Analytical Youth in Applied Mechanics
(
SWAYAM
), Pilani, Rajasthan, July 4–6, pp.
4
8
.https://www.researchgate.net/publication/326292232_Application_of_Embedded_Element_Approach_to_Nanostructure_of_Bone
50.
Tong
,
W.
,
Glimcher
,
M. J.
,
Katz
,
J. L.
,
Kuhn
,
L.
, and
Eppell
,
S. J.
,
2003
, “
Size and Shape of Mineralites in Young Bovine Bone Measured by Atomic Force Microscopy
,”
Calcif. Tissue Int.
,
72
(
5
), pp.
592
598
.
51.
Eppell
,
S. J.
,
Tong
,
W.
,
Lawrence Katz
,
J.
,
Kuhn
,
L.
, and
Glimcher
,
M. J.
,
2001
, “
Shape and Size of Isolated Bone Mineralites Measured Using Atomic Force Microscopy
,”
J. Orthop. Res.
,
19
(
6
), pp.
1027
1034
.
52.
Vater
,
C. A.
,
Harris
,
E. D.
, and
Siegel
,
R. C.
,
1979
, “
Native Cross-Links in Collagen Fibrils Induce Resistance to Human Synovial Collagenase
,”
Biochem. J.
,
181
(
3
), pp.
639
645
.
53.
Brodsky
,
B.
, and
Eikenberry
,
E. F.
,
1982
, “
[5] Characterization of Fibrous Forms of Collagen
,”
Methods Enzymol.
,
82
, pp. 127–174.
54.
Tzaphlidou
,
M.
,
2001
, “
Measurement of the Axial Periodicity of Collagen Fibrils Using an Image Processing Method
,”
Micron
,
32
(
3
), pp.
337
339
.
55.
Hulmes
,
D. J.
,
Wess
,
T. J.
,
Prockop
,
D. J.
, and
Fratzl
,
P.
,
1995
, “
Radial Packing, Order, and Disorder in Collagen Fibrils
,”
Biophys. J.
,
68
(
5
), pp.
1661
1670
.
56.
Smith
,
J. W.
,
1968
, “
Molecular Pattern in Native Collagen
,”
Nature
,
219
(
5150
), pp.
157
158
.
57.
Orgel
,
J. P. R. O.
,
Miller
,
A.
,
Irving
,
T. C.
,
Fischetti
,
R. F.
,
Hammersley
,
A. P.
, and
Wess
,
T. J.
,
2001
, “
The In Situ Supermolecular Structure of Type I Collagen
,”
Structure
,
9
(
11
), pp.
1061
1069
.
58.
Uzel
,
S. G. M.
, and
Buehler
,
M. J.
,
2009
, “
Nanomechanical Sequencing of Collagen: Tropocollagen Features Heterogeneous Elastic Properties at the Nanoscale
,”
Integr. Biol.
,
1
(
7
), p.
452
.
59.
Lees
,
S.
,
1981
, “
A Mixed Packing Model for Bone Collagen
,”
Calcif. Tissue Int.
,
33
(
6
), pp.
591
602
.
60.
Minary-Jolandan
,
M.
, and
Yu
,
M.-F.
,
2009
, “
Nanomechanical Heterogeneity in the Gap and Overlap Regions of Type I Collagen Fibrils With Implications for Bone Heterogeneity
,”
Biomacromolecules
,
10
(
9
), pp.
2565
2570
.
61.
Eppell
,
S.
,
Smith
,
B.
,
Kahn
,
H.
, and
Ballarini
,
R.
,
2006
, “
Nano Measurements With Micro-Devices: Mechanical Properties of Hydrated Collagen Fibrils
,”
J. R. Soc. Interface
,
3
(
6
), pp.
117
121
.
62.
Shen
,
Z. L.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2011
, “
Viscoelastic Properties of Isolated Collagen Fibrils
,”
Biophys. J.
,
100
(
12
), pp.
3008
3015
.
63.
Rubin
,
M. A.
,
Jasiuk
,
I.
,
Taylor
,
J.
,
Rubin
,
J.
,
Ganey
,
T.
, and
Apkarian
,
R. P.
,
2003
, “
TEM Analysis of the Nanostructure of Normal and Osteoporotic Human Trabecular Bone
,”
Bone
,
33
(
3
), pp.
270
282
.
64.
Currey
,
J. D.
,
1969
, “
The Relationship Between the Stiffness and the Mineral Content of Bone
,”
J. Biomech.
,
2
(
4
), pp.
477
480
.
65.
Sasaki
,
N.
,
Ikawa
,
T.
, and
Fukuda
,
A.
,
1991
, “
Orientation of Mineral in Bovine Bone and the Anisotropic Mechanical Properties of Plexiform Bone
,”
J. Biomech.
,
24
(
1
), pp.
57
61
.
66.
Jansson
,
S.
,
1992
, “
Homogenized Nonlinear Constitutive Properties and Local Stress Concentrations for Composites With Periodic Internal Structure
,”
Int. J. Solids Struct.
,
29
(
17
), pp.
2181
2200
.
67.
Rao
,
M. V.
,
Mahajan
,
P.
, and
Mittal
,
R. K.
,
2008
, “
Effect of Architecture on Mechanical Properties of Carbon/Carbon Composites
,”
Compos. Struct.
,
83
(
2
), pp.
131
142
.
68.
Sharma
,
R.
,
Bhagat
,
A. R.
, and
Mahajan
,
P.
,
2014
, “
Finite Element Analysis for Mechanical Characterization of 4D Inplane Carbon/Carbon Composite With Imperfect Microstructure
,”
Lat. J. Solids Struct.
,
11
(
2
), pp.
170
184
.
69.
Qsymah
,
A.
,
Sharma
,
R.
,
Yang
,
Z.
,
Margetts
,
L.
, and
Mummery
,
P.
,
2017
, “
Micro X-Ray Computed Tomography Image-Based Two-Scale Homogenisation of Ultra High Performance Fibre Reinforced Concrete
,”
Constr. Build. Mater.
,
130
, pp.
230
240
.
70.
Tabatabaei
,
S. A.
,
Lomov
,
S. V.
, and
Verpoest
,
I.
,
2014
, “
Assessment of Embedded Element Technique in Meso-FE Modelling of Fibre Reinforced Composites
,”
Compos. Struct.
,
107
, pp.
436
446
.
71.
Dassault Systèmes
,
2016
, “
ABAQUS 2017 Documentation
,” Dassault Systèmes, Providence, RI.
72.
Turunen
,
M. J.
,
Kaspersen
,
J. D.
,
Olsson
,
U.
,
Guizar-Sicairos
,
M.
,
Bech
,
M.
,
Schaff
,
F.
,
Tägil
,
M.
,
Jurvelin
,
J. S.
, and
Isaksson
,
H.
,
2016
, “
Bone Mineral Crystal Size and Organization Vary Across Mature Rat Bone Cortex
,”
J. Struct. Biol.
,
195
(
3
), pp.
337
344
.
73.
Danielsen
,
C. C.
,
Mosekilde
,
L.
, and
Svenstrup
,
B.
,
1993
, “
Cortical Bone Mass, Composition, and Mechanical Properties in Female Rats in Relation to Age, Long-Term Ovariectomy, and Estrogen Substitution
,”
Calcif. Tissue Int.
,
52
(
1
), pp.
26
33
.
74.
Fratzl
,
P.
,
Fratzl-Zelman
,
N.
,
Klaushofer
,
K.
,
Vogl
,
G.
, and
Koller
,
K.
,
1991
, “
Nucleation and Growth of Mineral Crystals in Bone Studied by Small-Angle X-Ray Scattering
,”
Calcif. Tissue Int.
,
48
(
6
), pp.
407
413
.
75.
Fratzl
,
P.
,
Groschner
,
M.
,
Vogl
,
G.
,
Plenk
,
H.
,
Eschberger
,
J.
,
Fratzl‐Zelman
,
N.
,
Koller
,
K.
, and
Klaushofer
,
K.
,
1992
, “
Mineral Crystals in Calcified Tissues: A Comparative Study by SAXS
,”
J. Bone Miner. Res.
,
7
(
3
), pp.
329
334
.
76.
Bonar
,
L. C.
,
Lees
,
S.
, and
Mook
,
H. A.
,
1985
, “
Neutron Diffraction Studies of Collagen in Fully Mineralized Bone
,”
J. Mol. Biol.
,
181
(
2
), pp.
265
270
.
77.
Vesentini
,
S.
,
Redaelli
,
A.
, and
Gautieri
,
A.
,
2013
, “
Nanomechanics of Collagen Microfibrils
,”
Muscles Ligaments Tendons J.
,
3
(
1
), p.
23
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676161/
78.
Lorenzo
,
A. C.
, and
Caffarena
,
E. R.
,
2005
, “
Elastic Properties, Young's Modulus Determination and Structural Stability of the Tropocollagen Molecule: A Computational Study by Steered Molecular Dynamics
,”
J. Biomech.
,
38
(
7
), pp.
1527
1533
.
79.
Sasaki
,
N.
, and
Odajima
,
S.
,
1996
, “
Stress-Strain Curve and Young's Modulus of a Collagen Molecule as Determined by the X-Ray Diffraction Technique
,”
J. Biomech.
,
29
(
5
), pp.
655
658
.
80.
Nair
,
A. K.
,
Gautieri
,
A.
, and
Buehler
,
M. J.
,
2014
, “
Role of Intra Fibrillar Collagen Mineralization in Defining the Compressive Properties of Nascent Bone
,”
Biomacromolecules
,
15
(
7
), pp.
2494
2500
.
81.
Buehler
,
M. J.
,
2007
, “
Molecular Nanomechanics of Nascent Bone: Fibrillar Toughening by Mineralization
,”
Nanotechnology
,
18
(
29
), p.
295102
.
82.
Sansalone
,
V.
,
Lemaire
,
T.
, and
Naili
,
S.
,
2009
, “
Variational Homogenization for Modeling Fibrillar Structures in Bone
,”
Mech. Res. Commun.
,
36
(
2
), pp.
265
273
.
83.
Wenger
,
M. P. E.
,
Bozec
,
L.
,
Horton
,
M. A.
, and
Mesquida
,
P.
,
2007
, “
Mechanical Properties of Collagen Fibrils
,”
Biophys. J.
,
93
(
4
), pp.
1255
1263
.
84.
Cusack
,
S.
, and
Miller
,
A.
,
1979
, “
Determination of the Elastic Constants of Collagen by Brillouin Light Scattering
,”
J. Mol. Biol.
,
135
(
1
), pp.
39
51
.
85.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
J. Appl. Mech.
,
18
(
3
), pp.
293
297
.https://pdfs.semanticscholar.org/88c3/7770028e7ed61180a34d6a837a9a4db3b264.pdf
86.
Yang
,
Z. J.
,
Su
,
X. T.
,
Chen
,
J. F.
, and
Liu
,
G. H.
,
2009
, “
Monte Carlo Simulation of Complex Cohesive Fracture in Random Heterogeneous Quasi-Brittle Materials
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3222
3234
.
87.
Wang
,
X. F.
,
Yang
,
Z. J.
,
Yates
,
J. R.
,
Jivkov
,
A. P.
, and
Zhang
,
C.
,
2015
, “
Monte Carlo Simulations of Mesoscale Fracture Modelling of Concrete With Random Aggregates and Pores
,”
Constr. Build. Mater.
,
75
, pp.
35
45
.
88.
Kotz
,
S.
, and
Nadarajah
,
S.
,
2000
,
Extreme Value Distributions: Theory and Applications
,
World Scientific
,
Covent Garden, London
.
You do not currently have access to this content.