Current shoulder clinical range of motion (ROM) assessments (e.g., goniometric ROM) may not adequately represent shoulder function beyond controlled clinical settings. Relative inertial measurement unit (IMU) motion quantifies ROM precisely and can be used outside of clinic settings capturing “real-world” shoulder function. A novel IMU-based shoulder elevation quantification method was developed via IMUs affixed to the sternum/humerus, respectively. This system was then compared to in-laboratory motion capture (MOCAP) during prescribed motions (flexion, abduction, scaption, and internal/external rotation). MOCAP/IMU elevation were equivalent during flexion (R2 = 0.96, μError = 1.7 deg), abduction (R2 = 0.96, μError = 2.9 deg), scaption (R2 = 0.98, μError = −0.3 deg), and internal/external rotation (R2 = 0.90, μError = 0.4 deg). When combined across movements, MOCAP/IMU elevation were equal (R2 = 0.98, μError = 1.4 deg). Following validation, the IMU-based system was deployed prospectively capturing continuous shoulder elevation in 10 healthy individuals (4 M, 69 ± 20 years) without shoulder pathology for seven consecutive days (13.5 ± 2.9 h/day). Elevation was calculated continuously daily and outcome metrics included percent spent in discrete ROM (e.g., 0–5 deg and 5–10 deg), repeated maximum elevation (i.e., >10 occurrences), and maximum/average elevation. Average elevation was 40 ± 6 deg. Maximum with >10 occurrences and maximum were on average 145–150 deg and 169 ± 8 deg, respectively. Subjects spent the vast majority of the day (97%) below 90 deg of elevation, with the most time spent in the 25–30 deg range (9.7%). This study demonstrates that individuals have the ability to achieve large ROMs but do not frequently do so. These results are consistent with the previously established lab-based measures. Moreover, they further inform how healthy individuals utilize their shoulders and may provide clinicians a reference for postsurgical ROM.

References

1.
Norris
,
T. R.
, and
Iannotti
,
J. P.
,
2002
, “
Functional Outcome After Shoulder Arthroplasty for Primary Osteoarthritis: A Multicenter Study
,”
J. Shoulder Elbow Surg.
,
11
(
2
), pp.
130
135
.
2.
Hawkins
,
R.
,
Bell
,
R.
, and
Jallay
,
B.
,
1989
, “
Total Shoulder Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
242
(
1
), pp.
188
194
.
3.
Sirveaux
,
F.
,
Favard
,
L.
,
Oudet
,
D.
,
Huquet
,
D.
,
Walch
,
G.
, and
Molé
,
D.
,
2004
, “
Grammont Inverted Total Shoulder Arthroplasty in the Treatment of Glenohumeral Osteoarthritis With Massive Rupture of the Cuff
,”
Bone Jt. J.
,
86
(
3
), pp.
388
395
.
4.
Ilfeld
,
B. M.
,
Wright
,
T. W.
,
Enneking
,
F. K.
, and
Morey
,
T. E.
,
2005
, “
Joint Range of Motion After Total Shoulder Arthroplasty With and Without a Continuous Interscalene Nerve Block: A Retrospective, Case-Control Study
,”
Reg. Anesth. Pain Med.
,
30
(
5
), pp.
429
433
.
5.
Brown
,
D. D.
, and
Friedman
,
R. J.
,
1998
, “
Postoperative Rehabilitation Following Total Shoulder Arthroplasty
,”
Orth. Clin. North Am.
,
29
(
3
), pp.
535
547
.
6.
Gore
,
D. R.
,
Murray
,
M. P.
,
Sepic
,
S. B.
, and
Gardner
,
G. M.
,
1986
, “
Shoulder-Muscle Strength and Range of Motion Following Surgical Repair of Full-Thickness Rotator-Cuff Tears
,”
JBJS
,
68
(
2
), pp.
266
272
.
7.
Ide
,
J.
, and
Takagi
,
K.
,
2004
, “
Early and Long-Term Results of Arthroscopic Treatment for Shoulder Stiffness
,”
J. Shoulder Elbow Surg.
,
13
(
2
), pp.
174
179
.
8.
Wu
,
G.
,
Van der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
9.
Magermans
,
D. J.
,
Chadwick
,
E. K.
,
Veeger
,
H. E.
, and
van der Helm
,
F. C.
,
2005
, “
Requirements for Upper Extremity Motions During Activities of Daily Living
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
6
), pp.
591
599
.
10.
Boone
,
D.
, and
Azen
,
S.
,
1979
, “
Normal Range of Motion of Joints in Male Subjects
,”
JBJS
,
61
(
5
), pp.
756
759
.
11.
Boardman
,
N. D.
, 3rd
,
Cofield
,
R. H.
,
Bengtson
,
K. A.
,
Little
,
R.
,
Jones
,
M. C.
, and
Rowland
,
C. M.
,
2001
, “
Rehabilitation After Total Shoulder Arthroplasty
,”
J Arthroplasty
,
16
(
4
), pp.
483
486
.
12.
Fisher
,
E. S.
,
Bell
,
J.-E.
,
Tomek
,
I. M.
,
Esty
,
A. R.
, and
Goodman
,
D. C.
,
2010
, “
Trends and Regional Variation in Hip, Knee, and Shoulder Replacement
,”
Dartmouth Atlas Surg. Rep.
,
1
(
1
), pp.
1
24
.http://archive.dartmouthatlas.org/downloads/reports/Joint_Replacement_0410.pdf
13.
Jackson
,
M.
,
Michaud
,
B.
,
Tetreault
,
P.
, and
Begon
,
M.
,
2012
, “
Improvements in Measuring Shoulder Joint Kinematics
,”
J. Biomech.
,
45
(
12
), pp.
2180
2183
.
14.
Riddle
,
D. L.
,
Rothstein
,
J. M.
, and
Lamb
,
R. L.
,
1986
, “
Goniometric Reliability in a Clinical Setting: Shoulder Measurements
,”
Phys. Ther.
,
67
(
5
), pp.
668
673
.
15.
Windolf
,
M.
,
Gotzen
,
N.
, and
Morlock
,
M.
,
2008
, “
Systematic Accuracy and Precision Analysis of Video Motion Capturing Systems—Exemplified on the Vicon-460 System
,”
J. Biomech.
,
41
(
12
), pp.
2776
2780
.
16.
Hassan
,
E. A.
,
Jenkyn
,
T. R.
, and
Dunning
,
C. E.
,
2007
, “
Direct Comparison of Kinematic Data Collected Using an Electromagnetic Tracking System Versus a Digital Optical System
,”
J. Biomech.
,
40
(
4
), pp.
930
935
.
17.
Braun
,
S.
,
Millett
,
P. J.
,
Yongpravat
,
C.
,
Pault
,
J. D.
,
Anstett
,
T.
,
Torry
,
M. R.
, and Giphart, J. E.,
2010
, “
Biomechanical Evaluation of Shear Force Vectors Leading to Injury of the Biceps Reflection Pulley: A Biplane Fluoroscopy Study on Cadaveric Shoulders
,”
Am. J. Sports Med.
,
38
(
5
), pp.
1015
1024
.
18.
El-Gohary
,
M.
, and
McNames
,
J.
,
2012
, “
Shoulder and Elbow Joint Angle Tracking With Inertial Sensors
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2635
2641
.
19.
Luinge
,
H. J.
,
Veltink
,
P. H.
, and
Baten
,
C. T.
,
2007
, “
Ambulatory Measurement of Arm Orientation
,”
J. Biomech.
,
40
(
1
), pp.
78
85
.
20.
Coley
,
B.
,
Jolles
,
B. M.
,
Farron
,
A.
, and
Aminian
,
K.
,
2008
, “
Arm Position During Daily Activity
,”
Gait Posture
,
28
(
4
), pp.
581
587
.
21.
Barnes
,
C. J.
,
Van Steyn
,
S. J.
, and
Fischer
,
R. A.
,
2001
, “
The Effects of Age, Sex, and Shoulder Dominance on Range of Motion of the Shoulder
,”
J. Shoulder Elbow Surg.
,
10
(
3
), pp.
242
246
.
22.
Soucie
,
J. M.
,
Wang
,
C.
,
Forsyth
,
A.
,
Funk
,
S.
,
Denny
,
M.
,
Roach
,
K. E.
, and Boone, D.,
2011
, “
Range of Motion Measurements: Reference Values and a Database for Comparison Studies
,”
Haemophilia
,
17
(
3
), pp.
500
507
.
23.
Bassey
,
E. J.
,
Morgan
,
K.
,
Dallosso
,
H. M.
, and
Ebrahim
,
S. B. J.
,
1989
, “
Flexibility of the Shoulder Joint Measured as Range of Abduction in a Large Representative Sample of Men and Women Over 65 Years of Age
,”
Eur. J. Appl. Phys.
,
58
(
4
), pp.
353
360
.
24.
de los Reyes-Guzman
,
A.
,
Dimbwadyo-Terrer
,
I.
,
Trincado-Alonso
,
F.
,
Monasterio-Huelin
,
F.
,
Torricelli
,
D.
, and
Gil-Agudo
,
A.
,
2014
, “
Quantitative Assessment Based on Kinematic Measures of Functional Impairments During Upper Extremity Movements: A Review
,”
Clin. Biomech. (Bristol, Avon)
,
29
(
7
), pp.
719
727
.
25.
Garland
,
S. J.
,
Stevenson
,
T. J.
, and
Ivanova
,
T.
,
1997
, “
Postural Responses to Unilateral Arm Perturbation in Young, Elderly, and Hemiplegic Subjects
,”
Arch. Phys. Med. Rehab.
,
78
(
10
), pp.
1072
1077
.
26.
Rogers
,
M. E.
,
Fernandez
,
J. E.
, and
Bohlken
,
R. M.
,
2001
, “
Training to Reduce Postural Sway and Increase Functional Reach in the Elderly
,”
Occup. Rehab.
,
11
(
4
), pp.
291
298
.
27.
Mall
,
G.
,
Hubig
,
M.
,
Büttner
,
A.
,
Kuznik
,
J.
,
Penning
,
R.
, and
Graw
,
M.
,
2001
, “
Sex Determination and Estimation of Stature From the Long Bones of the Arm
,”
Sci. Int.
,
117
(
1–2
), pp.
23
30
.
28.
Melton
,
C.
,
Mullineaux
,
D.
,
Mattacola
,
C.
,
Mair
,
S.
, and
Uhl
,
T.
,
2011
, “
Reliability of Video Motion-Analysis Systems to Measure Amplitude and Velocity of Shoulder Elevation
,”
J. Sport Rehab.
,
20
(
4
), pp.
393
405
.
29.
Winter
,
D. A.
,
1982
, “
Camera Speeds for Normal and Pathological Gait Analyses
,”
Med. Biol. Eng. Comp.
,
20
(
4
), pp.
408
412
.
30.
Pezzack
,
J.
,
Norman
,
R.
, and
Winter
,
D.
,
1977
, “
An Assessment of Derivative Determining Techniques Used for Motion Analysis
,”
J. Biomech.
,
10
(
5–6
), pp.
377
382
.
31.
Oldfield
,
R. C.
,
1971
, “
The Assessment and Analysis of Handedness: The Edinburgh Inventory
,”
Neuropsychologia
,
9
(
1
), pp.
97
113
.
32.
Michener
,
L. A.
,
McClure
,
P. W.
, and
Sennett
,
B. J.
,
2002
, “
American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, Patient Self-Report Section: Reliability, Validity, and Responsiveness
,”
J. Shoulder Elbow Surg.
,
11
(
6
), pp.
587
594
.
33.
Hung
,
M.
,
Baumhauer
,
J. F.
,
Latt
,
L. D.
,
Saltzman
,
C. L.
,
SooHoo
,
N. F.
, and
Hunt
,
K. J.
,
2013
, “
Validation of PROMIS® Physical Function Computerized Adaptive Tests for Orthopaedic Foot and Ankle Outcome Research
,”
Orth. Rel. Res.
,
471
(
11
), pp.
3466
3474
.
34.
Yun
,
Y.-H.
,
Jeong
,
B.-J.
,
Seo
,
M.-J.
, and
Shin
,
S.-J.
,
2015
, “
Simple Method of Evaluating the Range of Shoulder Motion Using Body Parts
,”
Clin. Shoulder Elbow
,
18
(
1
), pp.
13
20
.
35.
Lowe
,
B. D.
,
2004
, “
Accuracy and Validity of Observational Estimates of Shoulder and Elbow Posture
,”
Appl. Ergon.
,
35
(
2
), pp.
159
171
.
36.
Hayes
,
K.
,
Walton
,
J. R.
,
Szomar
,
Z. L.
, and
Murrell
,
G. A.
,
2001
, “
Reliability of Five Methods for Assessing Shoulder Range of Motion
,”
Aus. J. Phys.
,
47
(
4
), pp.
289
294
.
37.
Favre
,
J.
,
Jolles
,
B. M.
,
Aissaoui
,
R.
, and
Aminian
,
K.
,
2008
, “
Ambulatory Measurement of 3D Knee Joint Angle
,”
J. Biomech.
,
41
(
5
), pp.
1029
1035
.
38.
Favre
,
J.
,
Aissaoui
,
R.
,
Jolles
,
B. M.
,
de Guise
,
J. A.
, and
Aminian
,
K.
,
2009
, “
Functional Calibration Procedure for 3D Knee Joint Angle Description Using Inertial Sensors
,”
J. Biomech.
,
42
(
14
), pp.
2330
2335
.
39.
Kawano
,
K.
,
Kobashi
,
S.
,
Yagi
,
M.
,
Kondo
,
K.
,
Yoshiya
,
S.
, and
Hata
,
Y.
,
2007
, “
Analyzing 3D Knee Kinematics Using Accelerometers, Gyroscopes and Magnetometers
,”
IEEE Int. Conf.
,
1
(
1
), pp.
1
6
.
You do not currently have access to this content.