In this study, an inverse dynamics optimization formulation and solution procedure is developed for musculoskeletal simulations. The proposed method has three main features: high order recursive B-spline interpolation, partition of unity, and inverse dynamics formulation. First, joint angle and muscle force profiles are represented by recursive B-splines. The formula for high order recursive B-spline derivatives is derived for state variables calculation. Second, partition of unity is used to handle the multicontact indeterminacy between human and environment during the motion. The global forces and moments are distributed to each contacting point through the corresponding partition ratio. Third, joint torques are inversely calculated from equations of motion (EOM) based on state variables and contacts to avoid numerical integration of EOM. Therefore, the design variables for the optimization problem are joint angle control points, muscle force control points, knot vector, and partition ratios for contacting points. The sum of muscle stress/activity squared is minimized as the cost function. The constraints are imposed for human physical constraints and task-based constraints. The proposed formulation is demonstrated by simulating a trajectory planning problem of a planar musculoskeletal arm with six muscles. In addition, the gait motion of a two-dimensional musculoskeletal model with sixteen muscles is also optimized by using the approach developed in this paper. The gait optimal solution is obtained in about 1 min central processing unit (CPU) time. The predicted kinematics, kinetics, and muscle forces have general trends that are similar to those reported in the literature.

References

References
1.
De Groote
,
F.
,
Kinney
,
A. L.
,
Rao
,
A. V.
, and
Fregly
,
B. J.
,
2016
, “
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2922
2936
.
2.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Mech.
,
43
(
6
), pp.
1055
1060
.
3.
Bessonnet
,
G.
,
Marot
,
J.
,
Seguin
,
P.
, and
Sardain
,
P.
,
2010
, “
Parametric-Based Dynamic Synthesis of 3D-Gait
,”
Robotica
,
28
(
4
), pp.
563
581
.
4.
Farahani
,
S. D.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Rasmussen
,
J.
,
2016
, “
Optimization-Based Dynamic Prediction of Kinematic and Kinetic Patterns for a Human Vertical Jump From a Squatting Position
,”
Multibody Syst. Dyn.
,
36
(
1
), pp.
37
65
.
5.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.
6.
Garcia-Vallejo
,
D.
, and
Schiehlen
,
W.
,
2012
, “
3D-Simulation of Human Walking by Parameter Optimization
,”
Arch. Appl. Mech.
,
82
, pp.
533
556
.
7.
Lin
,
Y. C.
, and
Pandy
,
M. G.
,
2017
, “
Three-Dimensional Data-Tracking Dynamic Optimization Simulations of Human Locomotion Generated by Direct Collocation
,”
J. Mech.
,
59
, pp.
1
8
.
8.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Forward Dynamic Optimization of Human Gait Simulations: A Global Parameterization Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(3), p.
031018
.
9.
Shourijeh
,
M. S.
,
Smale
,
K. B.
,
Potvin
,
B. M.
, and
Benoit
,
D. L.
,
2016
, “
A Forward-Muscular Inverse-Skeletal Dynamics Framework for Human Musculoskeletal Simulations
,”
J. Mech.
,
49
, pp.
1718
1723
.
10.
Xiang
,
J.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2011
, “
Optimization-Based Prediction of Asymmetric Human Gait
,”
J. Mech.
,
44
(
4
), pp.
683
693
.
11.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
47
(
1
), pp.
99
131
.
12.
Pandy
,
M. G.
,
2001
, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
245
273
.
13.
Xiang
,
Y.
,
Arora
,
J. S.
,
Rahmatalla
,
S.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Dynamic Human Walking Prediction: One Step Formulation
,”
Int. J. Numer. Methods Eng.
,
79
(
6
), pp.
667
695
.
14.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Mech.
,
36
(
3
), pp.
321
328
.
15.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Mech.
,
39
(
6
), pp.
1107
1115
.
16.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
17.
Neptune
,
R. R.
,
Clark
,
D. J.
, and
Kautz
,
S. A.
,
2009
, “
Modular Control of Human Walking: A Simulation Study
,”
J. Mech.
,
42
(
9
), pp.
1282
1287
.
18.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Mech.
,
22
(
2
), pp.
131
154
.
19.
Kim
,
J. H.
,
Abdel-Malek
,
K.
,
Xiang
,
Y.
,
Yang
,
J.
, and
Arora
,
J. S.
,
2011
, “
Concurrent Motion Planning and Reaction Load Distribution for Redundant Dynamic Systems Under External Holonomic Constraints
,”
Int. J. Numer. Methods Eng.
,
88
(
1
), pp.
47
65
.
20.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1995
,
The NURBS Book
,
Springer
,
Berlin
.
21.
Prochazkova
,
J.
,
2005
, “
Derivative of B-Spline Function
,”
25th Conference on Geometry and Computer Graphics
, Prague, Czech Republic.http://mat.fsv.cvut.cz/gcg/sbornik/prochazkova.pdf
22.
Holzbaur
,
K. R.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.
23.
Modenese
,
L.
, and
Phillips
,
A. T. M.
,
2012
, “
Prediction of Hip Contact Forces and Muscle Activations During Walking at Different Speeds
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
157
168
.
24.
Gerritsen
,
K. G. M.
,
van den Bogert
,
A. J.
,
Hulliger
,
M.
, and
Zernicke
,
R. F.
,
1998
, “
Intrinsic Muscle Properties Facilitate Locomotor Control—A Computer Simulation Study
,”
Motor Control
,
2
(
3
), pp.
206
220
.
25.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(2), pp.
215
221
.
26.
Xiang
,
Y.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Motion Prediction of Mechanical Systems: Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
595
608
.
27.
Sharifi
,
M.
,
Salarieh
,
H.
, and
Behzadipour
,
S.
,
2017
, “
Nonlinear Optimal Control of Planar Musculoskeletal Arm Model With Minimum Muscles Stress Criterion
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011014
.
28.
Suzuki
,
M.
,
Yamazaki
,
Y.
,
Mizuno
,
N.
, and
Matsunami
,
K.
,
1997
, “
Trajectory Formation of the Center-of-Mass of the Arm During Reaching Movement
,”
Neuroscience
,
76
(
2
), pp.
597
610
.
29.
Ackermann
,
M.
,
2007
, “
Dynamics and Energetics of Walking With Prostheses
,”
Ph.D. dissertation
, University of Stuttgart, Stuttgart, Germany.https://elib.uni-stuttgart.de/bitstream/11682/4142/1/Ackermann_OPUS_Verlag.pdf
30.
Stansfield
,
B. W.
,
Hillman
,
S. J.
,
Hazlewood
,
M. E.
, and
Robb
,
J. E.
,
2006
, “
Regression Analysis of Gait Parameters With Speed in Normal Children Walking at Self-Selected Speeds
,”
Gait Posture
,
23
(
3
), pp.
288
294
.
31.
McLean
,
S. G.
,
Su
,
A.
, and
van den Bogert
,
A. J.
,
2003
, “
Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
864
874
.
32.
Happee
,
R.
,
1994
, “
Inverse Dynamic Optimization Including Muscular Dynamics, a New Simulation Method Applied to Goal Directed Movements
,”
J. Mech.
,
27
(
7
), pp.
953
960
.
33.
Lemos
,
R. R.
,
Epstein
,
M.
,
Herzog
,
W.
, and
Wyvill
,
B.
,
2004
, “
A Framework for Structured Modeling of Skeletal Muscle
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
6
), pp.
305
317
.
34.
Farahani
,
S. D.
,
Svinin
,
M.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Rasmussen
,
J.
,
2016
, “
Prediction of Closed-Chain Human Arm Dynamics in a Crank-Rotation Task
,”
J. Mech.
,
49
(
13
), pp.
2684
2693
.
You do not currently have access to this content.