An important feature of humeral orthopedic finite element (FE) models is the trabecular stiffness relationship. These relationships depend on the anatomic site from which they are derived; but have not been developed for the humerus. As a consequence, humeral FE modeling relies on relationships for other anatomic sites. The variation in humeral FE outcomes due to the trabecular stiffness relationship is assessed. Stemless arthroplasty FE models were constructed from CT scans of eight humeri. Models were loaded corresponding to 45 deg and 75 deg abduction. Each bone was modeled five times with the only variable being the trabecular stiffness relationship: four derived from different anatomic-sites and one pooled across sites. The FE outcome measures assessed were implant-bone contact percentage, von Mises of the change in stress, and bone response potential. The variance attributed to the selection of the trabecular stiffness relationship was quantified as the standard deviation existing between models of different trabecular stiffness. Overall, variability due to changing the trabecular stiffness relationship was low for all humeral FE outcome measures assessed. The variability was highest within the stress and bone formation potential outcome measures of the trabecular region. Variability only exceeded 10% in the trabecular stress change within two of the eight slices evaluated. In conclusion, the low variations attributable to the selection of a trabecular stiffness relationship based on anatomic-site suggest that FE models constructed for shoulder arthroplasty can utilize an inhomogeneous site-pooled trabecular relationship without inducing marked variability in the assessed outcome measures.

References

References
1.
Neer
,
C. S.
,
1955
, “
Articular Replacement for the Humeral Head
,”
J. Bone Jt. Surg.
,
37
(
2
), pp.
215
228
.
2.
Churchill
,
R. S.
, and
Athwal
,
G. S.
,
2016
, “
Stemless Shoulder Arthroplasty—Current Results and Designs
,”
Curr. Rev. Musculoskeletal Med.
,
9
(
1
), pp.
10
16
.
3.
Churchill
,
R. S.
,
2014
, “
Stemless Shoulder Arthroplasty: Current Status
,”
J. Shoulder Elbow Surg.
,
23
(
9
), pp.
1409
1414
.
4.
Inoue
,
K.
,
Suenaga
,
N.
,
Oizumi
,
N.
,
Yamaguchi
,
H.
,
Miyoshi
,
N.
,
Taniguchi
,
N.
,
Munemoto
,
M.
,
Egawa
,
T.
, and
Tanaka
,
Y.
,
2017
, “
Humeral Bone Resorption After Anatomic Shoulder Arthroplasty Using an Uncemented Stem
,”
J. Shoulder Elbow Surg.
,
26
(
11
), pp.
1984
1989
.
5.
Nagels
,
J.
,
Stokdijk
,
M.
, and
Rozing
,
P. M.
,
2003
, “
Stress Shielding and Bone Resorption in Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
2746
(
2
), pp.
35
39
.
6.
Spormann
,
C.
,
Durchholz
,
H.
,
Audigé
,
L.
,
Flury
,
M.
,
Schwyzer
,
H. K.
,
Simmen
,
B. R.
, and
Kolling
,
C.
,
2014
, “
Patterns of Proximal Humeral Bone Resorption After Total Shoulder Arthroplasty With an Uncemented Rectangular Stem
,”
J. Shoulder Elbow Surg.
,
23
(
7
), pp.
1028
1035
.
7.
Habermeyer
,
P.
,
Lichtenberg
,
S.
,
Tauber
,
M.
, and
Magosch
,
P.
,
2015
, “
Midterm Results of Stemless Shoulder Arthroplasty: A Prospective Study
,”
J. Shoulder Elbow Surg.
,
24
(
9
), pp.
1463
1472
.
8.
Churchill
,
R. S.
,
Chuinard
,
C.
,
Wiater
,
J. M.
,
Friedman
,
R.
,
Freehill
,
M.
,
Jacobson
,
S.
,
Spencer
,
E.
,
Holloway
,
G. B.
,
Wittstein
,
J.
,
Lassiter
,
T.
,
Smith
,
M.
,
Blaine
,
T.
, and
Nicholson
,
G. P.
,
2016
, “
Clinical and Radiographic Outcomes of the Simpliciti Canal-Sparing Shoulder Arthroplasty System: A Prospective Two-Year Multicenter Study
,”
J. Bone Jt. Surg.
,
98
(
7
), pp.
552
560
.
9.
Huguet
,
D.
,
DeClercq
,
G.
,
Rio
,
B.
,
Teissier
,
J.
, and
Zipoli
,
B.
,
2010
, “
Results of a New Stemless Shoulder Prosthesis: Radiologic Proof of Maintained Fixation and Stability After a Minimum of Three Years' Follow-Up
,”
J. Shoulder Elbow Surg.
,
19
(
6
), pp.
847
52
.
10.
Geurts
,
G. F.
,
van Riet
,
R. P.
,
Jansen
,
N.
, and
Declercq
,
G.
,
2010
, “
Placement of the Stemless Humeral Component in the Total Evolutive Shoulder System (TESS)
,”
Tech. Hand Upper Extremity Surg.
,
14
(
4
), pp.
214
7
.
11.
Kadum
,
B.
,
Mafi
,
N.
,
Norberg
,
S.
, and
Sayed-Noor
,
A. S.
,
2011
, “
Results of the Total Evolutive Shoulder System (TESS): A Single-Centre Study of 56 Consecutive Patients
,”
Arch. Orthop. Trauma Surg.
,
131
(
12
), pp.
1623
1629
.
12.
Kadum
,
B.
,
Hassany
,
H.
,
Wadsten
,
M.
,
Sayed-Noor
,
A.
, and
Sjoden
,
G.
,
2016
, “
Geometrical Analysis of Stemless Shoulder Arthroplasty: A Radiological Study of Seventy TESS Total Shoulder Prostheses
,”
Int. Orthop.
,
40
(
4
), pp.
751
758
.
13.
Razmjou
,
H.
,
Holtby
,
R.
,
Christakis
,
M.
,
Axelrod
,
T.
, and
Richards
,
R.
,
2013
, “
Impact of Prosthetic Design on Clinical and Radiologic Outcomes of Total Shoulder Arthroplasty: A Prospective Study
,”
J. Shoulder Elb. Surg.
,
22
(
2
), pp.
206
214
.
14.
Maier
,
M. W.
,
Lauer
,
S.
,
Klotz
,
M. C.
,
Bülhoff
,
M.
,
Spranz
,
D.
, and
Zeifang
,
F.
,
2015
, “
Are There Differences Between Stemless and Conventional Stemmed Shoulder Prostheses in the Treatment of Glenohumeral Osteoarthritis?
,”
BMC Musculoskeletal Disord.
,
16
(
1
), p.
275
.
15.
Uschok
,
S.
,
Magosch
,
P.
,
Moe
,
M.
,
Lichtenberg
,
S.
, and
Habermeyer
,
P.
,
2017
, “
Is the Stemless Humeral Head Replacement Clinically and Radiographically a Secure Equivalent to Standard Stem Humeral Head Replacement in the Long-Term Follow-Up? A Prospective Randomized Trial
,”
J. Shoulder Elbow Surg.
,
26
(
2
), pp.
225
232
.
16.
Berth
,
A.
, and
Pap
,
G.
,
2013
, “
Stemless Shoulder Prosthesis Versus Conventional Anatomic Shoulder Prosthesis in Patients With Osteoarthritis: A Comparison of the Functional Outcome After a Minimum of Two Years Follow-Up
,”
J. Orthop. Traumatol.
,
14
(
1
), pp.
31
37
.
17.
Kluess
,
D.
,
Souffrant
,
R.
,
Mittelmeier
,
W.
,
Wree
,
A.
,
Schmitz
,
K. P.
, and
Bader
,
R.
,
2009
, “
A Convenient Approach for Finite-Element-Analyses of Orthopaedic Implants in Bone Contact: Modeling and Experimental Validation
,”
Comput. Methods Programs Biomed.
,
95
(
1
), pp.
23
30
.
18.
Razfar
,
N.
,
Reeves
,
J. M.
,
Langohr
,
D. G.
,
Willing
,
R.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2016
, “
Comparison of Proximal Humeral Bone Stresses Between Stemless, Short Stem, and Standard Stem Length: A Finite Element Analysis
,”
J. Shoulder Elbow Surg.
,
25
(
7
), pp.
1076
1083
.
19.
Couteau
,
B.
,
Mansat
,
P.
,
Estivalèzes
,
E.
,
Darmana
,
R.
,
Mansat
,
M.
, and
Egan
,
J.
,
2001
, “
Finite Element Analysis of the Mechanical Behavior of a Scapula Implanted With a Glenoid Prosthesis
,”
Clin. Biomech.
,
16
(
7
), pp.
566
575
.
20.
Harrigan
,
T. P.
, and
Harris
,
W. H.
,
1991
, “
A Three-Dimensional Non-Linear Finite Element Study of the Effect of Cement-Prosthesis Debonding in Cemented Femoral Total Hip Components
,”
J. Biomech.
,
24
(
11
), pp.
1047
1058
.
21.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.
22.
Asgari
,
S. A.
,
Hamouda
,
A. M. S.
,
Mansor
,
S. B.
,
Singh
,
H.
, and
Mahdi
,
E.
,
2004
, “
Finite Element Modeling of a Generic Stemless Hip Implant Design in Comparison With Conventional Hip Implants
,”
Finite Elem. Anal. Des.
,
40
(
15
), pp.
2027
2047
.
23.
Engh
,
C.
, and
McGovern
,
T.
,
1992
, “
A Quantitative Evaluation of Periprosthetic Bone-Remodeling After Cementless Total Hip Arthroplasty
,”
J. Bone Jt. Surg.
,
74
(
7
), pp.
1009
1020
.
24.
Lerch
,
M.
,
Kurtz
,
A.
,
Stukenborg-Colsman
,
C.
,
Nolte
,
I.
,
Weigel
,
N.
,
Bouguecha
,
A.
, and
Behrens
,
B. A.
,
2012
, “
Bone Remodeling After Total Hip Arthroplasty With a Short Stemmed Metaphyseal Loading Implant: Finite Element Analysis Validated by a Prospective DEXA Investigation
,”
J. Orthop. Res.
,
30
(
11
), pp.
1822
1829
.
25.
Abdul-Kadir
,
M. R.
,
Hansen
,
U.
,
Klabunde
,
R.
,
Lucas
,
D.
, and
Amis
,
A.
,
2008
, “
Finite Element Modelling of Primary Hip Stem Stability: The Effect of Interference Fit
,”
J. Biomech.
,
41
(
3
), pp.
587
594
.
26.
Yosibash
,
Z.
,
Trabelsi
,
N.
, and
Milgrom
,
C.
,
2007
, “
Reliable Simulations of the Human Proximal Femur by High-Order Finite Element Analysis Validated by Experimental Observations
,”
J. Biomech.
,
40
(
16
), pp.
3688
3699
.
27.
Kheirollahi
,
H.
, and
Luo
,
Y.
,
2015
, “
Assessment of Hip Fracture Risk Using Cross-Section Strain Energy Determined by QCT-Based Finite Element Modeling
,”
Biomed Res. Int.
,
2015
, p.
e413839
.
28.
Reimeringer
,
M.
,
Nuño
,
N.
,
Desmarais-Trépanier
,
C.
,
Lavigne
,
M.
, and
Vendittoli
,
P. A.
,
2012
, “
The Influence of Uncemented Femoral Stem Length and Design on Its Primary Stability: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
, pp.
1
11
.
29.
Willing
,
R. T.
,
Lalone
,
E. A.
,
Shannon
,
H.
,
Johnson
,
J. A.
, and
King
,
G. J. W.
,
2013
, “
Validation of a Finite Element Model of the Human Elbow for Determining Cartilage Contact Mechanics
,”
J. Biomech.
,
46
(
10
), pp.
1767
1771
.
30.
Neuert
,
M. A. C.
,
Austman
,
R. L.
, and
Dunning
,
C. E.
,
2013
, “
The Comparison of Density-Elastic Modulus Equations for the Distal Ulna at Multiple Forearm Positions: A Finite Element Study
,”
Acta Bioeng. Biomech.
,
15
(
3
), pp.
37
43
.
31.
Neuert
,
M. A. C.
, and
Dunning
,
C. E.
,
2013
, “
Determination of Remodeling Parameters for a Strain-Adaptive Finite Element Model of the Distal Ulna
,”
Proc. Inst. Mech. Eng., Part H.
,
227
(
9
), pp.
994
1001
.
32.
Austman
,
R. L.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Dunning
,
C. E.
,
2008
, “
The Effect of the Density-Modulus Relationship Selected to Apply Material Properties in a Finite Element Model of Long Bone
,”
J. Biomech.
,
41
(
15
), pp.
3171
3176
.
33.
Willing
,
R.
,
King
,
G. J. W.
, and
Johnson
,
J. A.
,
2012
, “
The Effect of Implant Design of Linked Total Elbow Arthroplasty on Stability and Stress—A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(11), pp. 1165–1172.
34.
Dahan
,
G.
,
Trabelsi
,
N.
,
Safran
,
O.
, and
Yosibash
,
Z.
,
2016
, “
Verified and Validated Finite Element Analyses of Humeri
,”
J. Biomech.
,
49
(
7
), pp.
1094
1102
.
35.
Pomwenger
,
W.
,
Entacher
,
K.
,
Resch
,
H.
, and
Schuller-Götzburg
,
P.
,
2014
, “
Need for CT-Based Bone Density Modelling in Finite Element Analysis of a Shoulder Arthroplasty Revealed Through a Novel Method for Result Analysis
,”
Biomed. Tech.
,
59
(
5
), pp.
421
430
.
36.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
37.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
,
1993
, “
Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
(
2
), pp.
111
119
.
38.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
39.
Vijayakumar
,
V.
, and
Quenneville
,
C. E.
,
2016
, “
Quantifying the Regional Variations in the Mechanical Properties of Cancellous Bone of the Tibia Using Indentation Testing and Quantitative Computed Tomographic Imaging
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
6
), pp.
588
593
.
40.
Austman
,
R. L.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Dunning
,
C. E.
,
2009
, “
Development of a Customized Density-Modulus Relationship for Use in Subject-Specific Finite Element Models of the Ulna
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
6
), pp.
787
794
.
41.
Schileo
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2007
, “
Subject-Specific Finite Element Models Can Accurately Predict Strain Levels in Long Bones
,”
J. Biomech.
,
40
(
13
), pp.
2982
2989
.
42.
Peng
,
L.
,
Bai
,
J.
,
Zeng
,
X.
, and
Zhou
,
Y.
,
2006
, “
Comparison of Isotropic and Orthotropic Material Property Assignments on Femoral Finite Element Models Under Two Loading Conditions
,”
Med. Eng. Phys.
,
28
(
3
), pp.
227
233
.
43.
Eberle
,
S.
,
Göttlinger
,
M.
, and
Augat
,
P.
,
2013
, “
Individual Density-Elasticity Relationships Improve Accuracy of Subject-Specific Finite Element Models of Human Femurs
,”
J. Biomech.
,
46
(
13
), pp.
2152
2157
.
44.
Cong
,
A.
,
Buijs
,
J. O. D.
, and
Dragomir-Daescu
,
D.
,
2011
, “
In Situ Parameter Identification of Optimal Density-Elastic Modulus Relationships in Subject-Specific Finite Element Models of the Proximal Femur
,”
Med. Eng. Phys.
,
33
(
2
), pp.
164
173
.
45.
Helgason
,
B.
,
Perilli
,
E.
,
Schileo
,
E.
,
Taddei
,
F.
,
Brynjólfsson
,
S.
, and
Viceconti
,
M.
,
2008
, “
Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review
,”
Clin. Biomech.
,
23
(
2
), pp.
135
146
.
46.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.
47.
Kuiper
,
J. H.
, and
Huiskes
,
R.
,
1996
, “
Friction and Stem Stiffness Affect Dynamic Interface Motion in Total Hip Replacement
,”
J. Orthop. Res.
,
14
(
1
), pp.
36
43
.
48.
Lee
,
Y. T.
, and
Welsch
,
G.
,
1990
, “Young's
Modulus and Damping of Ti-6AI-4V Alloy as a Function of Heat Treatment and Oxygen Concentration
,”
Mater. Sci. Eng.
,
128
(
1
), pp.
77
89
.
49.
Grant
,
J. A.
,
Bishop
,
N. E.
,
Gotzen
,
N.
,
Sprecher
,
C.
,
Honl
,
M.
, and
Morlock
,
M. M.
,
2007
, “
Artificial Composite Bone as a Model of Human Trabecular Bone: The Implant—Bone Interface
,”
J. Biomech.
,
40
(
5
), pp.
1158
1164
.
50.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kaab
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces-Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.
51.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.
52.
Huiskes
,
R.
,
Ruimerman
,
R.
,
Lenthe
,
G. H. V.
, and
Janssen
,
J. D.
,
2000
, “
Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone
,”
Nature
,
405
(
6787
), pp.
704
706
.
53.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1992
, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
,
25
(
12
), pp.
1425
1441
.
54.
Carter
,
D. R.
,
Fyhrie
,
D. P.
, and
Whalen
,
R. T.
,
1987
, “
Trabecular Bone Density and Loading History: Regulation of Connective Tissue Biology by Mechanical Energy
,”
J. Biomech.
,
20
(
8
), pp.
785
794
.
55.
Johnson
,
J. A.
,
Rath
,
D. A.
,
Dunning
,
C. E.
,
Roth
,
S. E.
, and
King
,
G. J. W.
,
2000
, “
Simulation of Elbow and Forearm Motion In Vitro Using a Load Controlled Testing Apparatus
,”
J. Biomech.
,
33
(
5
), pp.
635
639
.
56.
Reeves
,
J. M.
,
2018
, “
An In-Silico Assessment of Stemless Shoulder Arthroplasty: From CT to Predicted Bone Response
,”
Ph.D. thesis
, The University of Western Ontario, London, ON, Canada.https://ir.lib.uwo.ca/etd/5398/
You do not currently have access to this content.