A spine is proven to be subjected to a follower load which is a compressive load of physiologic magnitude acting on the whole spine. The path of the follower load approximates the tangent to the curve of the spine in in vivo neutral standing posture. However, the specific path location of the follower load is still unclear. The aim of this study is to find out the most realistic location of the follower load path (FLP) for a lumbar spine in standing. A three-dimensional (3D) nonlinear finite element model (FEM) of lumbosacral vertebrae (L1-S1) with consideration of the calibrated material properties was established and validated by comparing with the experimental data. We show that the shape of the lumbosacral spine is strongly affected by the location of FLP. An evident nonlinear relationship between the FLP location and the kinematic response of the L1-S1 lumbosacral spine exists. The FLP at about 4 and 3 mm posterior to the curve connecting the center of the vertebral bodies delivers the most realistic location in standing for healthy people and patients having low back pains (LPBs), respectively. Moreover, the “sweeping” method introduced in this study can be applicable to all individualized FEM to determine the location of FLP.

References

References
1.
Dreischarf
,
M.
,
Albiol
,
L.
,
Zander
,
T.
,
Arshad
,
R.
,
Graichen
,
F.
,
Bergmann
,
G.
,
Schmidt
,
H.
, and
Rohlmann
,
A.
,
2015
, “
In Vivo Implant Forces Acting on a Vertebral Body Replacement During Upper Body Flexion
,”
J. Biomech.
,
48
(
4
), pp.
560
565
.
2.
Dreischarf
,
M.
,
Schmidt
,
H.
,
Putzier
,
M.
, and
Zander
,
T.
,
2015
, “
Biomechanics of the L5-S1 Motion Segment After Total Disc Replacement–Influence of Iatrogenic Distraction, Implant Positioning and Preoperative Disc Height on the Range of Motion and Loading of Facet Joints
,”
J. Biomech.
,
48
(
12
), pp.
3283
3291
.
3.
Hajihosseinali
,
M.
,
Arjmand
,
N.
, and
Shirazi-Adl
,
A.
,
2015
, “
Effect of Body Weight on Spinal Loads in Various Activities: A Personalized Biomechanical Modeling Approach
,”
J. Biomech.
,
48
(
2
), pp.
276
282
.
4.
Andersson
,
G. B.
,
1998
, “
Epidemiology of Low Back Pain
,”
Acta. Orthop. Scand. Suppl.
,
6
(
Suppl. 281
), pp.
28
31
.
5.
El-Rich
,
M.
,
Arnoux
,
P. J.
,
Wagnac
,
E.
,
Brunet
,
C.
, and
Aubin
,
C. E.
,
2009
, “
Finite Element Investigation of the Loading Rate Effect on the Spinal Load-Sharing Changes Under Impact Conditions
,”
J. Biomech.
,
42
(
9
), pp.
1252
1262
.
6.
Arjmand
,
N.
,
Ekrami
,
O.
,
Shirazi-Adl
,
A.
,
Plamondon
,
A.
, and
Parnianpour
,
M.
,
2013
, “
Relative Performances of Artificial Neural Network and Regression Mapping Tools in Evaluation of Spinal Loads and Muscle Forces During Static Lifting
,”
J. Biomech.
,
46
(
8
), pp.
1454
1462
.
7.
Kiefer
,
A.
,
Parnianpour
,
M.
, and
Shirazi-Adl
,
A.
,
1997
, “
Stability of the Human Spine in Neutral Postures
,”
Eur. Spine J.
,
6
(
1
), pp.
45
53
.
8.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
9.
Rohlmann
,
A.
,
Bergmann
,
G.
, and
Graichen
,
F.
,
1999
, “
Loads on Internal Spinal Fixators Measured in Different Body Positions
,”
Eur. Spine J.
,
8
(
5
), pp.
354
359
.
10.
Nachemson
,
A.
,
1966
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop.
,
45
, pp.
107
122
.
11.
Rohlmann
,
A.
,
Neller
,
S.
,
Claes
,
L.
,
Bergmann
,
G.
, and
Wilke
,
H. J.
,
2001
, “
Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine
,”
Spine
,
26
(
24
), pp.
E557
E561
.
12.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
, and
Voronov
,
L. I.
,
2003
, “
Effect of Compressive Follower Preload on the Flexion–Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.
13.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
(
10
), pp.
1003
1009
.
14.
Aspden
,
R. M.
,
1989
, “
The Spine as an Arch. A New Mathematical Model
,”
Spine
,
14
(
3
), pp.
266
274
.
15.
Renner
,
S. M.
,
Natarajan
,
R. N.
,
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Voronov
,
L. I.
,
Guo
,
B. Y.
,
Andersson
,
G. B. J.
, and
An
,
H. S.
,
2007
, “
Novel Model to Analyze the Effect of a Large Compressive Follower Pre-Load on Range of Motions in a Lumbar Spine
,”
J. Biomech.
,
40
(
6
), pp.
1326
1332
.
16.
Rohlmann
,
A.
,
Baue
,
L.
,
Zande
,
T.
,
Bergmann
,
G.
, and
Wilke
,
H. J.
,
2006
, “
Determination of Trunk Muscle Forces for Flexion and Extension by Using a Validated Finite Element Model of the Lumbar Spine and Measured In Vivo Data
,”
J. Biomech.
,
39
(
6
), pp.
981
989
.
17.
Wilke
,
H. J.
,
Rohlmann
,
A.
,
Neller
,
S.
,
Graichen
,
F.
,
Claes
,
L.
, and
Bergmann
,
G.
,
2003
, “
ISSLS Prize Winner: A Novel Approach to Determine Trunk Muscle Forces During Flexion and Extension: A Comparison of Data From an In Vitro Experiment and In Vivo Measurements
,”
Spine
,
28
(
23
), pp.
2585
2593
.
18.
Goel
,
V. K.
,
Panjabi
,
M. M.
,
Patwardhan
,
A. G.
,
Dooris
,
A. P.
, and
Serhan
,
H.
,
2006
, “
Test Protocols for Evaluation of Spinal Implants
,”
J. Bone Jt. Surg. Am.
,
88
(
Suppl. 2
), pp.
103
109
.
19.
Dreischarf
,
M.
,
Shirazi-Adl
,
A.
,
Arjmand
,
N.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2016
, “
Estimation of Loads on Human Lumbar Spine: A Review of In Vivo and Computational Model Studies
,”
J. Biomech.
,
49
(
6
), pp.
833
845
.
20.
Arjmand
,
N.
,
Gagnon
,
D.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
, and
Larivière
,
C.
,
2010
, “
A Comparative Study of Two Trunk Biomechanical Models Under Symmetric and Asymmetric Loadings
,”
J. Biomech.
,
43
(
3
), pp.
485
491
.
21.
Patwardhan
,
A. G.
,
Meade
,
K. P.
, and
Lee
,
B.
,
2001
, “
A Frontal Plane Model of the Lumbar Spine Subjected to a Follower Load: Implications for the Role of Muscles
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
212
217
.
22.
Kim
,
K.
, and
Kim
,
Y. H.
,
2008
, “
Role of Trunk Muscles in Generating Follower Load in the Lumbar Spine of Neutral Standing Posture
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041005
.
23.
Rohlmann
,
A.
,
Zander
,
T.
,
Rao
,
M.
, and
Bergmann
,
G.
,
2009
, “
Applying a Follower Load Delivers Realistic Results for Simulating Standing
,”
J. Biomech.
,
42
(
10
), pp.
1520
1526
.
24.
Han
,
K. S.
,
Rohlmann
,
A.
,
Yang
,
S. J.
,
Kim
,
B. S.
, and
Lim
,
T. H.
,
2011
, “
Spinal Muscles Can Create Compressive Follower Loads in the Lumbar Spine in a Neutral Standing Posture
,”
Med. Eng. Phys.
,
33
(
4
), pp.
472
478
.
25.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
3
), pp.
209
229
.
26.
Woldtvedt
,
D. J.
,
Womack
,
W.
,
Gadomski
,
B. C.
, and
Puttlitz
,
C. M.
,
2011
, “
Finite Element Lumbar Spine Facet Contact Parameter Predictions Are Affected by the Cartilage Thickness Distribution and Initial Joint Gap Size
,”
ASME J. Biomech. Eng.
,
133
(
6
), p.
061009
.
27.
Liu
,
C. L.
,
Zhong
,
Z. C.
,
Hsu
,
H. W.
,
Shih
,
S. L.
,
Wang
,
S. T.
,
Hung
,
C.
, and
Chen
,
C. S.
,
2011
, “
Effect of the Cord Pretension of the Dynesys Dynamic Stabilisation System on the Biomechanics of the Lumbar Spine: A Finite Element Analysis
,”
Eur. Spine J.
,
20
(
11
), pp.
1850
1858
.
28.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.
29.
Ueno
,
K.
, and
Liu
,
Y. K.
,
1987
, “
A Three-Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Torsion
,”
ASME J. Biomech. Eng.
,
109
(
3
), pp.
200
209
.
30.
Whynel
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
,
2001
, “
Parametric Finite Element Analysis of Verterbral Bodies Affected by Tumors
,”
J. Biomech.
,
34
(
10
), pp.
1317
1324
.
31.
Noailly
,
J.
,
Lacroix
,
D.
, and
Planell
,
J. A.
,
2005
, “
Finite Element Study of a Novel Intervertebral Disc Substitute
,”
Spine
,
30
(
20
), pp.
2257
2264
.
32.
Zhang
,
H.
, and
Zhu
,
W. P.
,
2017
, “
Dynamic Response of Stresses in Lumbar Vertebrae During Getting Up
,”
J. Med. Biomech.
,
32
(
4
), pp.
348
354
.http://www.cnki.net/kcms/doi/10.16156/j.1004-7220.2017.04.009.html
33.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
,
1986
, “
Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined With Compression
,”
Spine
,
11
(
9
), pp.
914
927
.
34.
Ayturk
,
U. M.
,
Garcia
,
J. J.
, and
Puttlitz
,
C. M.
,
2010
, “
The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061007
.
35.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
,
1986
, “
A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments
,”
J. Biomech.
,
19
(
4
), pp.
331
350
.
36.
Sharma
,
M.
,
Langrana
,
N. A.
, and
Rodriguez
,
J.
,
1995
, “
Role of Ligaments and Facets in Lumbar Spinal Stability
,”
Spine
,
20
(
8
), pp.
887
900
.
37.
Ayturk
,
U. M.
, and
Puttlitz
,
C. M.
,
2011
, “
Parametric Convergence Sensitivity and Validation of a Finite Element Model of the Human Lumbar Spine
,”
Comp. Meth. Biomech. Biomed. Eng.
,
14
(
8
), pp.
695
705
.
38.
Schmidt
,
H.
,
Heuer
,
F.
,
Drumm
,
J.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment
,”
Clin. Biomech.
,
22
(
4
), pp.
377
384
.
39.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2006
, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech.
,
21
(
4
), pp.
337
344
.
40.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
41.
Brinkmann
,
P.
, and
Grootenboer
,
H.
,
1991
, “
Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure From Discectomy. An In Vitro Investigation on Human Lumbar Discs
,”
Spine
,
16
(
6
), pp.
641
646
.
42.
Heuer
,
F.
,
Schmidt
,
H.
, and
Wilke
,
H. J.
,
2008
, “
The Relation Between Intervertebral Disc Bulging and Annular Fiber Associated Strains for Simple and Complex Loading
,”
J. Biomech.
,
41
(
5
), pp.
1086
1094
.
43.
Du
,
C. F.
,
Li
,
J. W.
,
Liu
,
H. Y.
, and
Huang
,
Y. P.
,
2017
, “
Effect of Follower Load on Facet Joint Contact Force of Lumbar Spine
,”
J. Med. Biomech.
,
32
(
4
), pp.
363
368
.
44.
Wood
,
K. B.
,
Kos
,
P.
,
Schendel
,
M.
, and
Persson
,
K.
,
1996
, “
Effect of Patient Position on the Sagittal–Plane Profile of the Thoracolumbar Spine
,”
J. Spinal Disord.
,
9
(
2
), pp.
165
169
.
45.
Nachemson
,
A.
,
Ortengren
,
R.
, and
Andersson
,
G. B.
,
1977
, “
Intradiskal Pressure, Intra-Abdominal Pressure and Myoelectric Back Muscle Activity Related to Posture and Loading
,”
Clin. Orthop. Relat. Res.
,
129
, pp.
156
164
.
46.
Nachemson
,
A.
,
Haderspeck
,
K.
,
Ortengren
,
R.
,
Andersson
,
G.
, and
Schultz
,
A.
,
1982
, “
Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J. Bone Jt. Surg. Am.
,
64
(
5
), pp.
713
720
.
47.
Sato
,
K.
,
Kikuchi
,
S.
, and
Yonezawa
,
T.
,
1999
, “
In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems
,”
Spine
,
24
(
23
), pp.
2468
2474
.
48.
Paholpak
,
P.
,
Nazareth
,
A.
,
Hsieh
,
P. C.
,
Buser
,
Z.
, and
Wang
,
J. C.
,
2017
, “
Kinematic Evaluation of Cervical Sagittal Balance and Thoracic Inlet Alignment in Degenerative Cervical Spondylolisthesis Using Kinematic Magnetic Resonance Imaging
,”
Spine
,
17
(
9
), pp.
1272
1284
.
49.
Consmüller
,
T.
,
Rohlmann
,
A.
,
Weinland
,
D.
,
Druschel
,
C.
,
Duda
,
G. N.
, and
Taylor
,
W. R.
,
2012
, “
Comparative Evaluation of a Novel Measurement Tool to Assess Lumbar Spine Posture and Range of Motion
,”
Eur. Spine J.
,
21
(
11
), pp.
2170
2180
.
50.
Consmüller
,
T.
,
Rohlmann
,
A.
,
Weinland
,
D.
,
Druschel
,
C.
,
Duda
,
G. N.
, and
Taylor
,
W. R.
,
2012
, “
Velocity of Lordosis Angle During Spinal Flexion and Extension
,”
PloS One
,
7
(
11
), p.
e50135
.
51.
Quint
,
U.
,
Wilke
,
H. J.
,
Löer
,
F.
, and
Claes
,
L.
,
1998
, “
Laminectomy and Functional Impairment of the Lumbar Spine: The Importance of Muscle Forces in Flexible and Rigid Instrumented Stabilization—A Biomechanical Study In Vitro
,”
Eur. Spine J.
,
7
(
3
), pp.
229
238
.
52.
Zander
,
T.
,
Rohlmann
,
A.
,
Calisse
,
J.
, and
Bergmann
,
G.
,
2001
, “
Estimation of Muscle Forces in the Lumbar Spine During Upper-Body Inclination
,”
Clin. Biomech.
,
16
(
S1
), pp.
S73
S80
.
53.
Heuer
,
F.
,
Schmidt
,
H.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Vertebral Translation and Intradiscal Pressure
,”
J. Biomech.
,
40
(
4
), pp.
795
803
.
54.
Schmidt
,
H.
,
Heuer
,
F.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2008
, “
The Relation Between the Instantaneous Center of Rotation and Facet Joint Forces—A Finite Element Analysis
,”
Clin. Biomech.
,
23
(
3
), pp.
270
278
.
55.
Naserkhakia
,
S.
,
Jaremko
,
J. L.
,
Adeeb
,
S.
, and
El-Rich
,
M.
,
2016
, “
On the Load-Sharing Along the Ligamentous Lumbosacral Spine in Flexed and Extended Postures: Finite Element Study
,”
J. Biomech.
,
49
(
6
), pp.
974
982
.
56.
Meakin
,
J. R.
,
Gregory
,
J. S.
,
Smith
,
F. W.
,
Gilbert
,
F. J.
, and
Aspden
,
R. M.
,
2008
, “
Characterizing the Shape of the Lumbar Spine Using an Active Shape Model: Reliability and Precision of the Method
,”
Spine
,
33
(
7
), pp.
807
813
.
You do not currently have access to this content.