The efficacy of reduced order modeling for transstenotic pressure drop in the coronary arteries is presented. Coronary artery disease is a leading cause of death worldwide and the computation of pressure drop in the coronary arteries has become a standard for evaluating the functional significance of a coronary stenosis. Comprehensive models typically employ three-dimensional (3D) computational fluid dynamics (CFD) to simulate coronary blood flow in order to compute transstenotic pressure drop at the arterial stenosis. In this study, we evaluate the capability of different hydrodynamic models to compute transstenotic pressure drop. Models range from algebraic formulae to one-dimensional (1D), two-dimensional (2D), and 3D time-dependent CFD simulations. Although several algebraic pressure-drop formulae have been proposed in the literature, these models were found to exhibit wide variation in predictions. Nonetheless, we demonstrate an algebraic formula that provides consistent predictions with 3D CFD results for various changes in stenosis severity, morphology, location, and flow rate. The accounting of viscous dissipation and flow separation were found to be significant contributions to accurate reduce order modeling of transstenotic coronary hemodynamics.

References

References
1.
Heidenreich
,
P.
,
Trogdon
,
J.
,
Khavjou
,
O.
,
Butler
,
J.
,
Dracup
,
K.
,
Ezekowitz
,
M. D.
,
Finkelstein
,
E. A.
,
Hong
,
Y.
,
Johnston
,
S. C.
,
Khera
,
A.
,
Lloyd-Jones
,
D. M.
,
Nelson
,
S. A.
,
Nichol
,
G.
,
Orenstein
,
D.
,
Wilson
,
P. W. F.
, and
Woo
,
Y. J.
,
2011
, “
Forecasting the Future of Cardiovascular Disease in the United States a Policy Statement From the American Heart Association
,”
Circulation
,
123
(
8
), pp.
933
944
.
2.
Meijboom
,
W. B.
,
Mieghem
,
C. A. V.
,
Pelt
,
N. V.
,
Weustink
,
A.
,
Pugliese
,
F.
,
Mollet
,
N. R.
,
Boersma
,
E.
,
Regar
,
E.
,
van Geuns
,
R. J.
,
de Jaegere
,
P. J.
,
Serruys
,
P. W.
,
Krestin
,
G. P.
, and
de Feyter
,
P. J.
,
2008
, “
Comprehensive Assessment of Coronary Artery Stenoses: Computed Tomography Coronary Angiography Versus Conventional Coronary Angiography and Correlation With Fractional Flow Reserve in Patients With Stable Angina
,”
J. Am. Coll. Cardiol
,
52
(
8
), pp.
636
643
.
3.
Schuijf
,
J. D.
, and
Bax
,
J. J.
,
2008
, “
CT Angiography: An Alternative to Nuclear Perfusion Imaging?
,”
Heart
,
94
(
3
), pp.
255
257
.
4.
Pijls
,
N. H.
,
Son
,
J. A.
,
Kirkeeide
,
J. A.
,
De Bruyne
,
R. L.
, and
Gould
,
B.
,
1993
, “
Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
,
87
(
4
), pp.
1354
1367
.
5.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.
6.
Min
,
J. K.
,
Leipsic
,
J.
,
Pencina
,
M. J.
,
Berman
,
D. S.
,
Min
,
B. K.
,
Leipsic
,
J.
,
Pelcina
,
M. J.
,
Berman
,
D. S.
,
Koo
,
B.-K.
,
van Mieghem
,
C.
,
Erglis
,
A.
,
Lin
,
F. Y.
,
Dunning
,
A. M.
,
Apruzzese
,
P.
,
Budoff
,
M. J.
,
Cole
,
J. H.
,
Jaffer
,
F. A.
,
Leon
,
M. B.
,
Malpeso
,
J.
,
Mancini
,
G. B. J.
,
Park
,
S.-J.
,
Schwartz
,
R. S.
,
Shaw
,
L. J.
, and
Mauri
,
L.
,
2012
, “
Diagnostic Accuracy of Fractional Flow Reserve From Anatomic CT Angiography
,”
JAMA
,
308
(
12
), pp.
1237
1245
.
7.
Nakazato
,
R.
,
Park
,
H. B.
,
Berman
,
D. S.
,
Gransar
,
H.
,
Koo
,
B. K.
,
Erglis
,
A.
,
Lin
,
F. Y.
,
Dunning
,
A. M.
,
Budoff
,
M. J.
,
Malpeso
,
J.
,
Leipsic
,
J.
, and
Min
,
J. K.
,
2013
, “
Noninvasive Fractional Flow Reserve Derived From Computed Tomography Angiography for Coronary Lesions of Intermediate Stenosis Severity: Results From the DeFACTO Study
,”
Circ. Cardiovasc. Imag.
,
6
(
6
), pp.
881
889
.
8.
Barnard
,
A. C. L.
,
Hunt
,
W. A.
,
Timlake
,
W. P.
, and
Varley
,
E. A.
,
1966
, “
Theory of Fluid Flow in Compliant Tubes
,”
Biophys. J.
,
6
(
6
), pp.
717
724
.
9.
Formaggia
,
L.
,
Lamponi
,
D.
,
Tuveri
,
M.
, and
Veneziani
,
A.
,
2006
, “
Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart
,”
Comput. Methods Biomech.
,
9
(
5
), pp.
273
288
.
10.
Hughes
,
T. J.
, and
Lubliner
,
J.
,
1973
, “
On the One-Dimensional Theory of Blood Flow in the Larger Vessels
,”
Math. Biosci.
,
18
(
1–2
), pp.
161
170
.
11.
Ghigo
,
A. R.
,
Fullana
,
J. M.
, and
Lagrée
,
P. Y.
,
2017
, “
A 2D Nonlinear Multi-ring Model for Blood Flow in Large Elastic Arteries
,”
J. Comput. Phys.
,
350
, pp.
136
165
.
12.
Young
,
D. F.
, and
Tsa
,
F. Y.
,
1973
, “
Flow Characteristic in Models of Arterial Stenosis—I, Steady Flow
,”
J. Biomech.
,
6
(
4
), pp.
395
410
.
13.
Young
,
D. F.
, and
Tsa
,
F. Y.
,
1973
, “
Flow Characteristic in Models of Arterial Stenosis—II, Unsteady Flow
,”
J. Biomech.
,
6
(
5
), pp.
547
559
.
14.
Seeley
,
B. D.
, and
Young
,
D. F.
,
1976
, “
Effect of Geometry on Pressure Losses Across Models of Arterial Stenosis
,”
J. Biomech.
,
9
(
7
), pp.
439
448
.
15.
Garcia
,
D.
,
Pibarot
,
P.
, and
Duranda
,
L. G.
,
2005
, “
Analytical Modeling of the Instantaneous Pressure Gradient Across the Aortic Valve
,”
J. Biomech.
,
38
(
6
), pp.
1303
1311
.
16.
Itu
,
L.
,
Sharma
,
P.
,
Ralovich
,
K.
,
Mihalef
,
V.
,
Ionasec
,
R.
,
Everett
,
A.
,
Ringel
,
R.
,
Kamen
,
A.
, and
Comaniciu
,
D.
,
2013
, “
Non-Invasive Hemodynamic Assessment of Aortic Coarctation: Validation With In Vivo Measurements
,”
Ann. Biomed. Eng.
,
41
(
4
), pp.
669
681
.
17.
Huo
,
Y. L.
,
Svendsen
,
M. J.
,
Choy
,
S.
,
Zhang
,
Z. D.
, and
Kassab
,
G. S.
,
2012
, “
A Validated Predictive Model of Coronary Fractional Flow Reserve
,”
J. R. Soc., Interface.
,
9
(
71
), pp.
1325
1338
.
18.
Schrauwen
,
J. T. C.
,
Wentzel
,
J. J.
,
Steen
,
A. F. W. V.
, and
Gijsen
,
F. J. H.
,
2014
, “
Geometry-Based Pressure Drop Prediction in Mildly Diseased Human Coronary Arteries
,”
J. Biomech.
,
47
, pp.
1810
1815
.
19.
Schrauwen
,
J. T. C.
,
Koeze
,
D. J.
,
Wentzel
,
J. J.
,
Vosse
,
F. N. V.
,
Steen
,
A. F. W. V.
, and
Gijsen
,
F. J. H.
,
2015
, “
Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
59
67
.
20.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2016
, “
Simvascular—An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.
21.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.
22.
Sankaran
,
S.
,
Moghadam
,
M. E.
,
Kahn
,
A. M.
,
Tseng
,
E. E.
,
Guccione
,
J. M.
, and
Marsden
,
A. L.
,
2012
, “
Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2228
2242
.
23.
Nørgaard
,
B. L.
,
Gaur
,
S.
,
Leipsic
,
J.
,
Ito
,
H.
,
Miyoshi
,
T.
,
Park
,
S. J.
,
Zvaigzne
,
L.
,
Tzemos
,
N.
,
Jensen
,
J. M.
,
Hansson
,
N.
,
Ko
,
B.
,
Bezerra
,
H.
,
Christiansen
,
E. H.
,
Kaltoft
,
A.
,
Lassen
,
J. F.
,
Bøtker
,
H. E.
, and
Achenbach
,
S.
,
2015
, “
Influence of Coronary Calcification on the Diagnostic Performance of CT Angiography Derived FFR in Coronary Artery Disease: A Substudy of the NXT Trial
,”
JACC: Cardiovasc. Imag.
,
8
, pp.
1045
1055
.
24.
Miyoshi
,
T.
,
Osawa
,
K.
,
Ito
,
H.
,
Kanazawa
,
S.
,
Kimura
,
T.
,
Shiomi
,
H.
,
Kuribayashi
,
S.
,
Jinzaki
,
M.
,
Kawamura
,
A.
,
Bezerra
,
H.
,
Achenbach
,
S.
, and
Nørgaard
,
B. L.
,
2015
, “
Non-Invasive Computed Fractional Flow Reserve From Computed Tomography (CT) for Diagnosing Coronary Artery Disease
,”
Circ. J.
,
79
(
2
), pp.
406
412
.
25.
Lu
,
M. T.
,
Ferencik
,
M.
,
Roberts
,
R. S.
,
Lee
,
K. L.
,
Ivanov
,
A.
,
Adami
,
E.
,
Mark
,
D. B.
,
Jaffer
,
F. A.
,
Leipsic
,
J. A.
,
Douglas
,
P. S.
, and
Hoffmann
,
U.
,
2017
, “
Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial
,”
JACC: Cardiovasc. Imag.
,
10
, pp.
1350
1358
.
26.
Changizi
,
M. A.
, and
Cherniak
,
C.
,
2000
, “
Modeling the Large-Scale Geometry of Human Coronary Arteries
,”
Can. J. Physiol. Pharm.
,
78
(
8
), pp.
603
611
.
27.
Wilson
,
R. F.
,
Wyche
,
K.
,
Christensen
,
B. V.
,
Zimmer
,
S.
, and
Laxson
,
D. D.
,
1990
, “
Effects of Adenosine on Human Coronary Arterial Circulation
,”
Circulation.
,
82
(
5
), pp.
1595
1606
.
28.
Perthame
,
B.
,
2002
,
Kinetic Formulation of Conservation Laws
,
Oxford Press
, New York.
29.
Audusse
,
E.
, and
Bristeau
,
M. O.
,
2005
, “
A Well-Balanced Positivity Preserving Second-Order Scheme for Shallow Water Flows on Unstructured Meshes
,”
J. Comput. Phys.
,
206
(
1
), pp.
311
333
.
30.
Formaggia
,
L.
,
Lamponi
,
D.
, and
Quarteroni
,
A.
,
2003
, “
One-Dimensional Models for Blood Flow in Arteries
,”
J. Eng. Math.
,
47
(
3/4
), pp.
251
276
.
31.
Sherwin
,
S. J.
,
Franke
,
V.
,
Peiro
,
J.
, and
Parker
,
K. H.
,
2003
, “
One-Dimensional Modelling of a Vascular Network in Space-Time Variables
,”
J. Eng. Math.
,
47
(
3/4
), pp.
217
250
.
32.
Fargie
,
D.
, and
Martin
,
B. W.
,
1971
, “
Developing Laminar Flow in a Pipe of Circular Cross-Section
,”
Proc. R. Soc. Lond. A.
,
321
(
1547
), pp.
461
476
.
33.
Opie
,
L. H.
,
2003
,
Heart Physiology: From Cell to Circulation
,
Lippincott Williams and Wilkins
,
Philadelphia, PA
.
34.
Boileau
,
E.
,
Pant
,
S.
,
Roobottom
,
C.
,
Sazonov
,
I.
,
Deng
,
J.
,
Xie
,
X.
, and
Nithiarasu
,
P.
,
2017
, “
Estimating the Accuracy of a Reduced-Order Model for the Calculation of Fractional Flow Reserve (FFR)
,”
Int. J. Numer. Meth. Biomed. Eng.
,
34
(1), p. e2908.
35.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Phil. Mag., Ser.
,
4
(
20
), pp.
208
223
.
36.
Molloi
,
S.
,
Zhou
,
Y.
, and
Kassab
,
G. S.
,
2004
, “
Regional Volumetric Coronary Blood Flow Measurement by Digital Angiography: In Vivo Validation
,”
Acad. Radiol.
,
11
(7), pp.
757
766
.
37.
Boileau
,
E.
,
Nithiarasu
,
P.
,
Blanco
,
P. J.
,
Müller
,
L. O.
,
Fossan
,
F. E.
,
Hellevik
,
L. R.
,
Donders
,
W. P.
,
Huberts
,
W.
,
Willemet
,
M.
, and
Alastruey
,
J.
,
2015
, “
A Benchmark Study of Numerical Schemes for One-Dimensional Arterial Blood Flow Modelling
,”
Int. J. Numer. Meth. Biomed. Eng.
,
31
(10), p. e02732.
You do not currently have access to this content.