Transmural advective transport of solute and fluid was investigated in mouse carotid arteries with either a genetic knockout of fibulin-5 (Fbln5−/−) or treatment with elastase to determine the influence of a disrupted elastic fiber matrix on wall transport properties. Fibulin-5 is an important director of elastic fiber assembly. Arteries from Fbln5−/− mice have a loose, noncontinuous elastic fiber network and were hypothesized to have reduced resistance to advective transport. Experiments were carried out ex vivo at physiological pressure and axial stretch. Hydraulic conductance (LP) was measured to be 4.99 × 10−6±8.94 × 10−7, 3.18−5±1.13 × 10−5 (p < 0.01), and 3.57 × 10−5 ±1.77 × 10−5 (p < 0.01) mm·s−1·mmHg−1 for wild-type, Fbln5−/−, and elastase-treated carotids, respectively. Solute fluxes of 4, 70, and 150 kDa fluorescein isothiocyanate (FITC)-dextran were statistically increased in Fbln5−/− compared to wild-type by a factor of 4, 22, and 3, respectively. Similarly, elastase-treated carotids demonstrated a 27- and 13-fold increase in net solute flux of 70 and 150 kDa FITC-dextran, respectively, compared to untreated carotids, and 4 kDa FITC-dextran was unchanged between these groups. Solute uptake of 4 and 70 kDa FITC-dextran within Fbln5−/− carotids was decreased compared to wild-type for all investigated time points. These changes in transport properties of elastic fiber compromised arteries have important implications for the kinetics of biomolecules and pharmaceuticals in arterial tissue following elastic fiber degradation due to aging or vascular disease.

References

1.
Pellegrini
,
D. O.
,
Gomes
,
V. O.
,
Lasevitch
,
R.
,
Smidt
,
L.
,
Azeredo
,
M. A.
,
Ledur
,
P.
,
Bodanese
,
R.
,
Sinnott
,
L.
,
Moriguchi
,
E.
, and
Caramori
,
P.
,
2014
, “
Efficacy and Safety of Drug-Eluting Stents in the Real World: 8-Year Follow-Up
,”
Arq. Bras. Cardiol.
,
103
(
3
), pp.
174
82
.
2.
Buchanan
,
K.
,
Steinvil
,
A.
, and
Waksman
,
R.
,
2017
, “
Does the New Generation of Drug-Eluting Stents Render Bare Metal Stents Obsolete?
,”
Cardiovasc. Revasc. Med.
,
18
(
6
), pp.
456
461
.
3.
Cui
,
K.
,
Lyu
,
S.
,
Song
,
X.
,
Yuan
,
F.
,
Xu
,
F.
,
Zhang
,
M.
,
Wang
,
W.
,
Zhang
,
D.
, and
Dai
,
J.
,
2017
, “
Drug-Eluting Balloon Versus Bare-Mental Stent and Drug-Eluting Stent for De Novo Coronary Artery Disease: A Systematic Review and Meta-Analysis of 14 Randomized Controlled Trials
,”
PLoS One
,
12
(
4
), p.
e0176365
.
4.
Collins
,
M. J.
,
Li
,
X.
,
Lv
,
W.
,
Yang
,
C.
,
Protack
,
C. D.
,
Muto
,
A.
,
Jadlowiec
,
C. C.
,
Shu
,
C.
, and
Dardik
,
A.
,
2012
, “
Therapeutic Strategies to Combat Neointimal Hyperplasia in Vascular Grafts
,”
Expert Rev. Cardiovasc. Ther.
,
10
(
5
), pp.
635
647
.
5.
Seedial
,
S. M.
,
Ghosh
,
S.
,
Saunders
,
R. S.
,
Suwanabol
,
P. A.
,
Shi
,
X.
,
Liu
,
B.
, and
Kent
,
K. C.
,
2013
, “
Local Drug Delivery to Prevent Restenosis
,”
J. Vasc. Surg.
,
57
(
5
), pp.
1403
1414
.
6.
Golledge
,
J.
,
Cullen
,
B.
,
Moran
,
C.
, and
Rush
,
C.
,
2010
, “
Efficacy of Simvastatin in Reducing Aortic Dilatation in Mouse Models of Abdominal Aortic Aneurysm
,”
Cardiovasc. Drugs Ther.
,
24
(
5–6
), pp.
373
378
.
7.
Steinmetz
,
E. F.
,
Buckley
,
C.
,
Shames
,
M. L.
,
Ennis
,
T. L.
,
Vanvickle-Chavez
,
S. J.
,
Mao
,
D.
,
Goeddel
,
L. A.
,
Hawkins
,
C. J.
, and
Thompson
,
R. W.
,
2005
, “
Treatment With Simvastatin Suppresses the Development of Experimental Abdominal Aortic Aneurysms in Normal and Hypercholesterolemic Mice
,”
Ann. Surg.
,
241
(
1
), pp.
92
101
.
8.
Moore
,
G.
,
Liao
,
S.
,
Curci
,
J. A.
,
Starcher
,
B. C.
,
Martin
,
R. L.
,
Hendricks
,
R. T.
,
Chen
,
J. J.
, and
Thompson
,
R. W.
,
1999
, “
Suppression of Experimental Abdominal Aortic Aneurysms by Systemic Treatment With a Hydroxamate-Based Matrix Metalloproteinase Inhibitor (RS 132908)
,”
J. Vasc. Surg.
,
29
(
3
), pp.
522
532
.
9.
Fraga-Silva
,
R. A.
,
Trachet
,
B.
, and
Stergiopulos
,
N.
,
2015
, “
Emerging Pharmacological Treatments to Prevent Abdominal Aortic Aneurysm Growth and Rupture
,”
Curr. Pharm. Des.
,
21
(
28
), pp.
4000
4006
.
10.
Kurosawa
,
K.
,
Matsumura
,
J. S.
, and
Yamanouchi
,
D.
,
2013
, “
Current Status of Medical Treatment for Abdominal Aortic Aneurysm
,”
Circ. J.
,
77
(
12
), pp.
2860
2866
.
11.
Yoshimura
,
K.
,
Morikage
,
N.
,
Nishino-Fujimoto
,
S.
,
Furutani
,
A.
,
Shirasawa
,
B.
, and
Hamano
,
K.
,
2017
, “
Current Status and Perspectives on Pharmacologic Therapy for Abdominal Aortic Aneurysm
,”
Curr Drug Targets
,
19
(
11
), pp.
1265
1275
.
12.
Shirasu
,
T.
,
Koyama
,
H.
,
Miura
,
Y.
,
Hoshina
,
K.
,
Kataoka
,
K.
, and
Watanabe
,
T.
,
2016
, “
Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats
,”
PLoS One
,
11
(
6
), p.
e0157813
.
13.
Nosoudi
,
N.
,
Chowdhury
,
A.
,
Siclari
,
S.
,
Parasaram
,
V.
,
Karamched
,
S.
, and
Vyavahare
,
N.
,
2016
, “
Systemic Delivery of Nanoparticles Loaded With Pentagalloyl Glucose Protects Elastic Lamina and Prevents Abdominal Aortic Aneurysm in Rats
,”
J. Cardiovasc. Transl. Res.
,
9
(
5–6
), pp.
445
455
.
14.
Wang
,
X.
,
Searle
,
A. K.
,
Hohmann
,
J. D.
,
Liu
,
A. L.
,
Abraham
,
M. K.
,
Palasubramaniam
,
J.
,
Lim
,
B.
,
Yao
,
Y.
,
Wallert
,
M.
,
Yu
,
E.
,
Chen
,
Y. C.
, and
Peter
,
K.
,
2018
, “
Dual-Targeted Theranostic Delivery of miRs Arrests Abdominal Aortic Aneurysm Development
,”
Mol. Ther.
,
26
(
4
), pp.
1056
1065
.
15.
Nosoudi
,
N.
,
Nahar-Gohad
,
P.
,
Sinha
,
A.
,
Chowdhury
,
A.
,
Gerard
,
P.
,
Carsten
,
C. G.
,
Gray
,
B. H.
, and
Vyavahare
,
N. R.
,
2015
, “
Prevention of Abdominal Aortic Aneurysm Progression by Targeted Inhibition of Matrix Metalloproteinase Activity With Batimastat-Loaded Nanoparticles
,”
Circ. Res.
,
117
(
11
), pp.
e80
e89
.
16.
Sivaraman
,
B.
, and
Ramamurthi
,
A.
,
2013
, “
Multifunctional Nanoparticles for Doxycycline Delivery Towards Localized Elastic Matrix Stabilization and Regenerative Repair
,”
Acta Biomater.
,
9
(
5
), pp.
6511
6525
.
17.
Hwang
,
C. W.
,
Wu
,
D.
, and
Edelman
,
E. R.
,
2001
, “
Physiological Transport Forces Govern Drug Distribution for Stent-Based Delivery
,”
Circulation
,
104
(
5
), pp.
600
605
.
18.
Davis
,
E. C.
,
1993
, “
Stability of Elastin in the Developing Mouse Aorta: A Quantitative Radioautographic Study
,”
Histochemistry
,
100
(
1
), pp.
17
26
.
19.
Dingemans
,
K. P.
,
Teeling
,
P.
,
Lagendijk
,
J. H.
, and
Becker
,
A. E.
,
2000
, “
Extracellular Matrix of the Human Aortic Media: An Ultrastructural Histochemical and Immunohistochemical Study of the Adult Aortic Media
,”
Anat. Rec.
,
258
(
1
), pp.
1
14
.
20.
O'Connell
,
M. K.
,
Murthy
,
S.
,
Phan
,
S.
,
Xu
,
C.
,
Buchanan
,
J.
,
Spilker
,
R.
,
Dalman
,
R. L.
,
Zarins
,
C. K.
,
Denk
,
W.
, and
Taylor
,
C. A.
,
2008
, “
The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging
,”
Matrix Biol.
,
27
(
3
), pp.
171
181
.
21.
Ramirez
,
C. A.
,
Colton
,
C. K.
,
Smith
,
K. A.
,
Stemerman
,
M. B.
, and
Lees
,
R. S.
,
1984
, “
Transport of 125I-Albumin Across Normal and Deendothelialized Rabbit Thoracic Aorta In Vivo
,”
Aeteriosclerosis
,
4
(
3
), pp.
283
291
.
22.
Caro
,
C. G.
,
Lever
,
M. J.
,
Laver-Rudich
,
Z.
,
Meyer
,
F.
,
Liron
,
N.
,
Ebel
,
W.
,
Parker
,
K. H.
, and
Winlove
,
C. P.
,
1980
, “
Net Albumin Transport Across the Wall of the Rabbit Common Carotid Artery Perfused In Situ
,”
Atherosclerosis
,
37
(
4
), pp.
497
511
.
23.
Pfeffer
,
R.
,
Ganatos
,
P.
,
Nir
,
A.
, and
Weinbaum
,
S.
,
1981
, “
Diffusion of Macromolecules Across the Arterial Wall in the Presence of Multiple Endothelial Injuries
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
197
203
.
24.
Proctor
,
S. D.
,
Vine
,
D. F.
, and
Mamo
,
J. C.
,
2004
, “
Arterial Permeability and Efflux of Apolipoprotein B-Containing Lipoproteins Assessed by in Situ Perfusion and Three-Dimensional Quantitative Confocal Microscopy
,”
Arterioscler. Thromb. Vasc. Biol.
,
24
(
11
), pp.
2162
2167
.
25.
Tada
,
S.
, and
Tarbell
,
J. M.
,
2004
, “
Internal Elastic Lamina Affects the Distribution of Macromolecules in the Arterial Wall: A Computational Study
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
2
), pp.
H905
H913
.
26.
Huang
,
Z. J.
, and
Tarbell
,
J. M.
,
1997
, “
Numerical Simulation of Mass Transfer in Porous Media of Blood Vessel Walls
,”
Am. J. Physiol.
,
273
(
1
), pp.
H464
H477
.https://www.ncbi.nlm.nih.gov/pubmed/9249521
27.
Fry
,
D. L.
,
1985
, “
Mathematical Models of Arterial Transmural Transport
,”
Am. J. Physiol.
,
248
(
2
), pp.
H240
H263
.
28.
Caro
,
C. G.
, and
Lever
,
M. J.
,
1984
, “
Factors Influencing Arterial Wall Mass Transport
,”
Biorheology
,
21
(
1–2
), pp.
197
205
.
29.
Kim
,
W. S.
, and
Tarbell
,
J. M.
,
1994
, “
Macromolecular Transport Through the Deformable Porous Media of an Artery Wall
,”
ASME J. Biomech. Eng.
,
116
(
2
), pp.
156
163
.
30.
Hwang
,
C. W.
, and
Edelman
,
E. R.
,
2002
, “
Arterial Ultrastructure Influences Transport of Locally Delivered Drugs
,”
Circ. Res.
,
90
(
7
), pp.
826
832
.
31.
Nakamura
,
T.
,
Lozano
,
P. R.
,
Ikeda
,
Y.
,
Iwanaga
,
Y.
,
Hinek
,
A.
,
Minamisawa
,
S.
,
Cheng
,
C. F.
,
Kobuke
,
K.
,
Dalton
,
N.
,
Takada
,
Y.
,
Tashiro
,
K.
,
Ross, J.
,
Jr.
,
Honjo
,
T.
, and
Chien
,
K. R.
,
2002
, “
Fibulin-5/DANCE is Essential for Elastogenesis In Vivo
,”
Nature
,
415
(
6868
), pp.
171
175
.
32.
Le
,
V. P.
,
Cheng
,
J. K.
,
Kim
,
J.
,
Staiculescu
,
M. C.
,
Ficker
,
S. W.
,
Sheth
,
S. C.
,
Bhayani
,
S. A.
,
Mecham
,
R. P.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J. E.
,
2015
, “
Mechanical Factors Direct Mouse Aortic Remodelling During Early Maturation
,”
J. R. Soc., Interface
,
12
(
104
), p.
20141350
.
33.
Kedem
,
O.
, and
Katchalsky
,
A.
,
1958
, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Biophys. Acta.
,
27
(
2
), pp.
229
246
.
34.
Yanagisawa
,
H.
,
Davis
,
E. C.
,
Starcher
,
B. C.
,
Ouchi
,
T.
,
Yanagisawa
,
M.
,
Richardson
,
J. A.
, and
Olson
,
E. N.
,
2002
, “
Fibulin-5 is an Elastin-Binding Protein Essential for Elastic Fibre Development In Vivo
,”
Nature
,
415
(
6868
), pp.
168
171
.
35.
Ferruzzi
,
J.
,
Bersi
,
M. R.
,
Uman
,
S.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2015
, “
Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031007
.
36.
Luetkemeyer
,
C. M.
,
James
,
R. H.
,
Devarakonda
,
S. T.
,
Le
,
V. P.
,
Liu
,
Q.
,
Han
,
H. C.
, and
Wagenseil
,
J. E.
,
2015
, “
Critical Buckling Pressure in Mouse Carotid Arteries With Altered Elastic Fibers
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
69
82
.
37.
Ralevic
,
V.
,
Kristek
,
F.
,
Hudlicka
,
O.
, and
Burnstock
,
G.
,
1989
, “
A New Protocol for Removal of the Endothelium From the Perfused Rat Hind-Limb Preparation
,”
Circ. Res.
,
64
(
6
), pp.
1190
1196
.
38.
Winkler
,
R. H.
,
1978
, “
The Effect of Halides (NaCl and NaI) on In Vitro Pancreatic Elastase Activity
,”
Connect. Tissue Res.
,
6
(
2
), pp.
89
92
.
39.
Wan
,
W.
,
Yanagisawa
,
H.
, and
Gleason
,
R. L.
, Jr.
,
2010
, “
Biomechanical and Microstructural Properties of Common Carotid Arteries From Fibulin-5 Null Mice
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3605
3617
.
40.
Wong
,
L. C.
, and
Langille
,
B. L.
,
1996
, “
Developmental Remodeling of the Internal Elastic Lamina of Rabbit Arteries: Effect of Blood Flow
,”
Circ. Res.
,
78
(
5
), pp.
799
805
.
41.
Armstrong
,
J. K.
,
Wenby
,
R. B.
,
Meiselman
,
H. J.
, and
Fisher
,
T. C.
,
2004
, “
The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation
,”
Biophys. J.
,
87
(
6
), pp.
4259
70
.
42.
Lopez-Guimet
,
J.
,
Andilla
,
J.
,
Loza-Alvarez
,
P.
, and
Egea
,
G.
,
2017
, “
High-Resolution Morphological Approach to Analyse Elastic Laminae Injuries of the Ascending Aorta in a Murine Model of Marfan Syndrome
,”
Sci. Rep.
,
7
(
1
), p.
1505
.
43.
Ushiki
,
T.
,
2002
, “
Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding From a Morphological Viewpoint
,”
Arch. Histol. Cytol.
,
65
(
2
), pp.
109
126
.
44.
Tedgui
,
A.
, and
Lever
,
M. J.
,
1984
, “
Filtration Through Damaged and Undamaged Rabbit Thoracic Aorta
,”
Am. J. Physiol.
,
247
(
5
), pp.
H784
H791
.
45.
Baldwin
,
A. L.
, and
Wilson
,
L. M.
,
1993
, “
Endothelium Increases Medial Hydraulic Conductance of Aorta, Possibly by Release of EDRF
,”
Am. J. Physiol.
,
264
(
1
), pp.
H26
H32
.
46.
Shou
,
Y.
,
Jan
,
K. M.
, and
Rumschitzki
,
D. S.
,
2006
, “
Transport in Rat Vessel Walls—I: Hydraulic Conductivities of the Aorta, Pulmonary Artery, and Inferior Vena Cava With Intact and Denuded Endothelia
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
6
), pp.
H2758
H2771
.
47.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1967
, “
A Lamellar Unit of Aortic Medial Structure and Function in Mammals
,”
Circ. Res.
,
20
(
1
), pp.
99
111
.
48.
Baldwin
,
A. L.
,
Wilson
,
L. M.
, and
Simon
,
B. R.
,
1992
, “
Effect of Pressure on Aortic Hydraulic Conductance
,”
Arterioscler. Thromb.
,
12
(
2
), pp.
163
171
.
49.
Tarbell
,
J. M.
,
Lever
,
M. J.
, and
Caro
,
C. G.
,
1988
, “
The Effect of Varying Albumin Concentration of the Hydraulic Conductivity of the Rabbit Common Carotid Artery
,”
Microvasc. Res.
,
35
(
2
), pp.
204
220
.
50.
Williams
,
C.
,
Liao
,
J.
,
Joyce
,
E. M.
,
Wang
,
B.
,
Leach
,
J. B.
,
Sacks
,
M. S.
, and
Wong
,
J. Y.
,
2009
, “
Altered Structural and Mechanical Properties in Decellularized Rabbit Carotid Arteries
,”
Acta Biomater.
,
5
(
4
), pp.
993
1005
.
51.
Rees
,
P. M.
,
1968
, “
Electron Microscopical Observations on the Architecture of the Carotid Arterial Walls, With Special Reference to the Sinus Portion
,”
J. Anat.
,
103
(
Pt. 1
), pp.
35
47
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231873/
52.
Sugita
,
S.
, and
Matsumoto
,
T.
,
2017
, “
Multiphoton Microscopy Observations of 3D Elastin and Collagen Fiber Microstructure Changes During Pressurization in Aortic Media
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
763
773
.
53.
Chow
,
M. J.
,
Turcotte
,
R.
,
Lin
,
C. P.
, and
Zhang
,
Y.
,
2014
, “
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
,”
Biophys. J.
,
106
(
12
), pp.
2684
2692
.
54.
Cocciolone
,
A. J.
,
Hawes
,
J. Z.
,
Staiculescu
,
M. C.
,
Johnson
,
E. O.
,
Murshed
,
M.
, and
Wagenseil
,
J. E.
,
2018
, “
Elastin, Arterial Mechanics, and Cardiovascular Disease
,”
Am. J. Physiol. Heart Circ. Physiol.
,
315
(
2
), pp.
H189
H205
.
55.
Baldwin
,
A. K.
,
Simpson
,
A.
,
Steer
,
R.
,
Cain
,
S. A.
, and
Kielty
,
C. M.
,
2013
, “
Elastic Fibres in Health and Disease
,”
Expert Rev. Mol. Med.
,
15
, p.
e8
.
56.
Duca
,
L.
,
Blaise
,
S.
,
Romier
,
B.
,
Laffargue
,
M.
,
Gayral
,
S.
,
El Btaouri
,
H.
,
Kawecki
,
C.
,
Guillot
,
A.
,
Martiny
,
L.
,
Debelle
,
L.
, and
Maurice
,
P.
,
2016
, “
Matrix Ageing and Vascular Impacts: Focus on Elastin Fragmentation
,”
Cardiovasc. Res.
,
110
(
3
), pp.
298
308
.
57.
Tsamis
,
A.
,
Krawiec
,
J. T.
, and
Vorp
,
D. A.
,
2013
, “
Elastin and Collagen Fibre Microstructure of the Human Aorta in Ageing and Disease: A Review
,”
J. R. Soc., Interface
,
10
(
83
), p.
20121004
.
58.
Chen
,
J. Y.
,
Tsai
,
P. J.
,
Tai
,
H. C.
,
Tsai
,
R. L.
,
Chang
,
Y. T.
,
Wang
,
M. C.
,
Chiou
,
Y. W.
,
Yeh
,
M. L.
,
Tang
,
M. J.
,
Lam
,
C. F.
,
Shiesh
,
S. C.
,
Li
,
Y. H.
,
Tsai
,
W. C.
,
Chou
,
C. H.
,
Lin
,
L. J.
,
Wu
,
H. L.
, and
Tsai
,
Y. S.
,
2013
, “
Increased Aortic Stiffness and Attenuated Lysyl Oxidase Activity in Obesity
,”
Arterioscler. Thromb. Vasc. Biol.
,
33
(
4
), pp.
839
846
.
59.
Akima
,
T.
,
Nakanishi
,
K.
,
Suzuki
,
K.
,
Katayama
,
M.
,
Ohsuzu
,
F.
, and
Kawai
,
T.
,
2009
, “
Soluble Elastin Decreases in the Progress of Atheroma Formation in Human Aorta
,”
Circ. J.
,
73
(
11
), pp.
2154
2162
.
60.
Van der Donckt
,
C.
,
Van Herck
,
J. L.
,
Schrijvers
,
D. M.
,
Vanhoutte
,
G.
,
Verhoye
,
M.
,
Blockx
,
I.
,
Van Der Linden
,
A.
,
Bauters
,
D.
,
Lijnen
,
H. R.
,
Sluimer
,
J. C.
,
Roth
,
L.
,
Van Hove
,
C. E.
,
Fransen
,
P.
,
Knaapen
,
M. W.
,
Hervent
,
A. S.
,
De Keulenaer
,
G. W.
,
Bult
,
H.
,
Martinet
,
W.
,
Herman
,
A. G.
, and
De Meyer
,
G. R.
,
2015
, “
Elastin Fragmentation in Atherosclerotic Mice Leads to Intraplaque Neovascularization, Plaque Rupture, Myocardial Infarction, Stroke, and Sudden Death
,”
Eur. Heart J.
,
36
(
17
), pp.
1049
1058
.
61.
Maedeker
,
J. A.
,
Stoka
,
K. V.
,
Bhayani
,
S. A.
,
Gardner
,
W. S.
,
Bennett
,
L.
,
Procknow
,
J. D.
,
Staiculescu
,
M. C.
,
Walji
,
T. A.
,
Craft
,
C. S.
, and
Wagenseil
,
J. E.
,
2016
, “
Hypertension and Decreased Aortic Compliance Due to Reduced Elastin Amounts Do Not Increase Atherosclerotic Plaque Accumulation in Ldlr−/− Mice
,”
Atherosclerosis
,
249
, pp.
22
29
.
62.
Stoka
,
K. V.
,
Maedeker
,
J. A.
,
Bennett
,
L.
,
Bhayani
,
S. A.
,
Gardner
,
W. S.
,
Procknow
,
J. D.
,
Cocciolone
,
A. J.
,
Walji
,
T. A.
,
Craft
,
C. S.
, and
Wagenseil
,
J. E.
,
2018
, “
Effects of Increased Arterial Stiffness on Atherosclerotic Plaque Amounts
,”
ASME J. Biomech. Eng.
,
140
(
5
), p.
051007
.
63.
Hosoda
,
Y.
,
Kawano
,
K.
,
Yamasawa
,
F.
,
Ishii
,
T.
,
Shibata
,
T.
, and
Inayama
,
S.
,
1984
, “
Age-Dependent Changes of Collagen and Elastin Content in Human Aorta and Pulmonary Artery
,”
Angiology
,
35
(
10
), pp.
615
621
.
64.
Spina
,
M.
,
Garbisa
,
S.
,
Hinnie
,
J.
,
Hunter
,
J. C.
, and
Serafini-Fracassini
,
A.
,
1983
, “
Age-Related Changes in Composition and Mechanical Properties of the Tunica Media of the Upper Thoracic Human Aorta
,”
Aeteriosclerosis
,
3
(
1
), pp.
64
76
.
65.
Fritze
,
O.
,
Romero
,
B.
,
Schleicher
,
M.
,
Jacob
,
M. P.
,
Oh
,
D. Y.
,
Starcher
,
B.
,
Schenke-Layland
,
K.
,
Bujan
,
J.
, and
Stock
,
U. A.
,
2012
, “
Age-Related Changes in the Elastic Tissue of the Human Aorta
,”
J. Vasc. Res.
,
49
(
1
), pp.
77
86
.
66.
Sans
,
M.
, and
Moragas
,
A.
,
1993
, “
Mathematical Morphologic Analysis of the Aortic Medial Structure. Biomechanical Implications
,”
Anal. Quant. Cytol. Histol.
,
15
(
2
), pp.
93
100
.https://www.ncbi.nlm.nih.gov/pubmed/8318132
67.
Avolio
,
A.
,
Jones
,
D.
, and
Tafazzoli-Shadpour
,
M.
,
1998
, “
Quantification of Alterations in Structure and Function of Elastin in the Arterial Media
,”
Hypertension
,
32
(
1
), pp.
170
175
.
68.
Wang
,
M.
, and
Lakatta
,
E. G.
,
2002
, “
Altered Regulation of Matrix Metalloproteinase-2 in Aortic Remodeling During Aging
,”
Hypertension
,
39
(
4
), pp.
865
873
.
69.
Wan
,
W.
, and
Gleason
,
R. L.
, Jr.
,
2013
, “
Dysfunction in Elastic Fiber Formation in Fibulin-5 Null Mice Abrogates the Evolution in Mechanical Response of Carotid Arteries During Maturation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
304
(
5
), pp.
H674
H686
.
70.
Baldwin
,
A. L.
,
Wilson
,
L. M.
,
Gradus-Pizlo
,
I.
,
Wilensky
,
R.
, and
March
,
K.
,
1997
, “
Effect of Atherosclerosis on Transmural Convection an Arterial Ultrastructure. Implications Local Intravascular Drug Delivery
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
(
12
), pp.
3365
3375
.
71.
Tedgui
,
A.
, and
Lever
,
M. J.
,
1985
, “
The Interaction of Convection and Diffusion in the Transport of 131I-Albumin Within the Media of the Rabbit Thoracic Aorta
,”
Circ. Res.
,
57
(
6
), pp.
856
863
.
You do not currently have access to this content.