The reduction of excessive, nonphysiologic shear stresses leading to blood trauma can be the key to overcome many of the associated complications in blood recirculating devices. In that regard, computational fluid dynamics (CFD) are gaining in importance for the hydraulic and hemocompatibility assessment. Still, direct hemolysis assessments with CFD remain inaccurate and limited to qualitative comparisons rather than quantitative predictions. An underestimated quantity for improved blood damage prediction accuracy is the influence of near-wall mesh resolution on shear stress quantification in regions of complex flows. This study investigated the necessary mesh refinement to quantify shear stress for two selected, meshing sensitive hotspots within a rotary centrifugal blood pump (the blade leading edge and tip clearance gap). The shear stress in these regions is elevated due to presence of stagnation points and the flow around a sharp edge. The nondimensional mesh characteristic number y+, which is known in the context of turbulence modeling, underestimated the maximum wall shear stress by 60% on average with the recommended value of 1, but was found to be exact below 0.1. To evaluate the meshing related error on the numerical hemolysis prediction, three-dimensional simulations of a generic centrifugal pump were performed with mesh sizes from 3 × 106 to 30 × 106 elements. The respective hemolysis was calculated using an Eulerian scalar transport model. Mesh insensitivity was found below a maximum y+ of 0.2 necessitating 18 × 106 mesh elements. A meshing related error of up to 25% was found for the coarser meshes. Further investigations need to address: (1) the transferability to other geometries and (2) potential adaptions on blood damage estimation models to allow better quantitative predictions.

References

References
1.
Bluestein
,
D.
,
2004
, “
Research Approaches for Studying Flow-Induced Thromboembolic Complications in Blood Recirculating Devices
,”
Expert Rev. Med. Dev.
,
1
(
1
), pp.
65
80
.
2.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.
3.
Paul
,
R.
,
Apel
,
J.
,
Klaus
,
S.
,
Schugner
,
F.
,
Schwindke
,
P.
, and
Reul
,
H.
,
2003
, “
Shear Stress Related Blood Damage in Laminar Couette Flow
,”
Artif. Organs
,
27
(
6
), pp.
517
529
.
4.
Tchantchaleishvili
,
V.
,
Sagebin
,
F.
,
Ross
,
R. E.
,
Hallinan
,
W.
,
Schwarz
,
K. Q.
, and
Massey
,
H. T.
,
2014
, “
Evaluation and Treatment of Pump Thrombosis and Hemolysis
,”
Ann. Cardiothorac. Surg.
,
3
(
5
), pp.
490
495
.
5.
Casa
,
L. D. C.
,
Deaton
,
D. H.
, and
Ku
,
D. N.
,
2015
, “
Role of High Shear Rate in Thrombosis
,”
J. Vasc. Surg.
,
61
(
4
), pp.
1068
1080
.
6.
Olia
,
S. E.
,
Maul
,
T. M.
,
Antaki
,
J. F.
, and
Kameneva
,
M. V.
,
2016
, “
Mechanical Blood Trauma in Assisted Circulation: Sublethal RBC Damage Preceding Hemolysis
,”
Int. J. Artif. Organs
,
39
(
4
), pp.
150
159
.
7.
Burgreen
,
G. W.
,
Antaki
,
J. F.
,
Wu
,
Z. J.
, and
Holmes
,
A. J.
,
2001
, “
Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps
,”
Artif. Organs
,
25
(
5
), pp.
336
340
.
8.
Ertan Taskin
,
M.
,
Zhang
,
T.
,
Fraser
,
K. H.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Design Optimization of a Wearable Artificial Pump-Lung Device With Computational Modeling
,”
ASME J. Med. Devices
,
6
(
3
), p.
31009
.
9.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
(
3
), pp.
263
280
.
10.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
11.
Zhang
,
J.
,
Zhang
,
P.
,
Fraser
,
K. H.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2013
, “
Comparison and Experimental Validation of Fluid Dynamic Numerical Models for a Clinical Ventricular Assist Device
,”
Artif. Organs
,
37
(
4
), pp.
380
389
.
12.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
81002
.
13.
Lacasse
,
D.
,
Garon
,
A.
, and
Pelletier
,
D.
,
2007
, “
Mechanical Hemolysis in Blood Flow: User-Independent Predictions With the Solution of a Partial Differential Equation
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
1
), pp.
1
12
.
14.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
,
2005
, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
.
15.
Arora
,
D.
,
2005
, “
Computational Hemodynamics: Hemolysis and Viscoelasticity
,” Ph.D. thesis, Rice University, Houston, TX.
16.
Goubergrits
,
L.
, and
Affeld
,
K.
,
2004
, “
Numerical Estimation of Blood Damage in Artificial Organs
,”
Artif. Organs
,
28
(
5
), pp.
499
507
.
17.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.
18.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.
19.
Malinauskas
,
R. A.
,
Hariharan
,
P.
,
Day
,
S. W.
,
Herbertson
,
L. H.
,
Buesen
,
M.
,
Steinseifer
,
U.
,
Aycock
,
K. I.
,
Good
,
B. C.
,
Deutsch
,
S.
,
Manning
,
K. B.
, and
Craven
,
B. A.
,
2017
, “
FDA Benchmark Medical Device Flow Models for CFD Validation
,”
ASAIO J.
,
63
(
2
), pp.
150
160
.
20.
Moshfeghi
,
M.
,
Song
,
Y. J.
, and
Xie
,
Y. H.
,
2012
, “
Effects of Near-Wall Grid Spacing on SST-K-ω Model Using NREL Phase VI Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
94
105
.
21.
Bangga
,
G.
,
Kusumadewi
,
T.
,
Hutomo
,
G.
,
Sabila
,
A.
,
Syawitri
,
T.
,
Setiadi
,
H.
,
Faisal
,
M.
,
Wiranegara
,
R.
,
Hendranata
,
Y.
,
Lastomo
,
D.
,
Putra
,
L.
, and
Kristiadi
,
S.
,
2018
, “
Improving a Two-Equation Eddy-Viscosity Turbulence Model to Predict the Aerodynamic Performance of Thick Wind Turbine Airfoils
,”
J. Phys.: Conf. Ser.
,
974
(1), p.
12019
.
22.
American Institute of Aeronautics and Astronautics
2011
, “
Best Practices for Aero-Database CFD Simulations of Ares V Ascent
,”
AIAA
Paper No. 2011-16.
23.
El Khchine
,
Y.
, and
Sriti
,
M.
,
2017
, “
Boundary Layer and Amplified Grid Effects on Aerodynamic Performances of S809 Airfoil for Horizontal Axis Wind Turbine (HAWT)
,”
J. Eng. Sci. Technol.
,
12
(
11
), pp.
3011
3022
.http://jestec.taylors.edu.my/Vol%2012%20issue%2011%20November%202017/12_11_12.pdf
24.
Pauli
,
L.
,
Nam
,
J.
,
Pasquali
,
M.
, and
Behr
,
M.
,
2013
, “
Transient Stress-Based and Strain-Based Hemolysis Estimation in a Simplified Blood Pump
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
10
), pp.
1148
1160
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Song
,
X.
,
Wood
,
H. G.
,
Day
,
S. W.
, and
Olsen
,
D. B.
,
2003
, “
Studies of Turbulence Models in a Computational Fluid Dynamics Model of a Blood Pump
,”
Artif. Organs
,
27
(
10
), pp.
935
937
.
27.
Thamsen
,
B.
,
Mevert
,
R.
,
Lommel
,
M.
,
Preikschat
,
P.
,
Gaebler
,
J.
,
Krabatsch
,
T.
,
Kertzscher
,
U.
,
Hennig
,
E.
, and
Affeld
,
K.
,
2016
, “
A Two-Stage Rotary Blood Pump Design With Potentially Lower Blood Trauma: A Computational Study
,”
Int. J. Artif. Organs
,
39
(
4
), pp.
178
183
.
28.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.
29.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Gellman
,
B.
,
Fleischli
,
A.
,
Dasse
,
K. A.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2010
, “
Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support
,”
Artif. Organs
,
34
(
12
), pp.
1099
1113
.
30.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
9th ed.
,
Springer
,
Berlin
.
31.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.
32.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart–Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
41010
.
33.
Thamsen
,
B.
,
Blümel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.
You do not currently have access to this content.