Although the underlying mechanisms of pelvic organ prolapse (POP) remain unknown, disruption of elastic fiber metabolism within the vaginal wall extracellular matrix (ECM) has been highly implicated. It has been hypothesized that elastic fiber fragmentation correlates to decreased structural integrity and increased risk of prolapse; however, the mechanisms by which elastic fiber damage may contribute to prolapse are poorly understood. Furthermore, the role of elastic fibers in normal vaginal wall mechanics has not been fully ascertained. Therefore, the objective of this study is to investigate the contribution of elastic fibers to murine vaginal wall mechanics. Vaginal tissue from C57BL/6 female mice was mechanically tested using biaxial extension–inflation protocols before and after intraluminal exposure to elastase. Elastase digestion induced marked changes in the vaginal geometry, and biaxial mechanical properties, suggesting that elastic fibers may play an important role in vaginal wall mechanical function. Additionally, a constitutive model that considered two diagonal families of collagen fibers with a slight preference toward the circumferential direction described the data reasonably well before and after digestion. The present findings may be important to determine the underlying structural and mechanical mechanisms of POP, and aid in the development of growth and remodeling models for improved assessment and prediction of changes in structure–function relationships with prolapse development.

References

References
1.
DeLancey
,
J. O.
,
2005
, “
The Hidden Epidemic of Pelvic Floor Dysfunction: Achievable Goals for Improved Prevention and Treatment
,”
Am. J. Obstet. Gynecol.
,
192
(
5
), pp.
1488
1495
.
2.
Subak
,
L. L.
,
Waetjen
,
L. E.
,
van den Eeden
,
S.
,
Thom
,
D. H.
,
Vittinghoff
,
E.
, and
Brown
,
J. S.
,
2001
, “
Cost of Pelvic Organ Prolapse Surgery in the United States
,”
Obstet. Gynecol.
,
98
(
4
), pp.
646
651
.
3.
Pizarro-Berdichevsky
,
J.
,
Clifton
,
M. M.
, and
Goldman
,
H. B.
,
2015
, “
Evaluation and Management of Pelvic Organ Prolapse in Elderly Women
,”
Clin. Geriatr. Med.
,
31
(
4
), pp.
507
521
.
4.
Baah-Dwomoh
,
A.
,
McGuire
,
J.
,
Tan
,
T.
, and
De Vita
,
R.
,
2016
, “
Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060801
.
5.
Abramowitch
,
S. D.
,
Feola
,
A.
,
Jallah
,
Z.
, and
Moalli
,
P. A.
,
2009
, “
Tissue Mechanics, Animal Models, and Pelvic Organ Prolapse: A Review
,”
Eur. J. Obstetr. Gynecol.
,
144
, pp.
S146
S158
.
6.
Alperin
,
A. M.
, and
Moalli
,
A. P.
,
2006
, “
Remodeling of Vaginal Connective Tissue in Patients With Prolapse
,”
Curr. Opin. Obstetr. Gynecol.
,
18
(
5
), pp.
544
550
.
7.
Kerkhof
,
M. H.
,
Hendriks
,
L.
, and
Brölmann
,
H. A.
,
2009
, “
Changes in Connective Tissue in Patients With Pelvic Organ Prolapse—A Review of the Current Literature
,”
Int. Urogynecol. J. Pelvic. Floor Dysfunct.
,
20
(
4
), pp.
461
474
.
8.
Skoczylas
,
L. C.
,
Jallah
,
Z.
,
Sugino
,
Y.
,
Stein
,
S. E.
,
Feola
,
A.
,
Yoshimura
,
N.
, and
Moalli
,
P.
,
2013
, “
Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology
,”
Reprod. Sci.
,
20
(
4
), pp.
382
390
.
9.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.
10.
Fonck
,
E.
,
Prod'hom
,
G.
,
Roy
,
S.
,
Augsburger
,
L.
,
Rüfenacht
,
D. A.
, and
Stergiopulos
,
N.
,
2007
, “
Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
6
), pp.
H2754
H2763
.
11.
Henninger
,
H. B.
,
Underwood
,
C. J.
,
Romney
,
S. J.
,
Davis
,
G. L.
, and
Weiss
,
J. A.
,
2013
, “
Effect of Elastin Digestion on the Quasi‐Static Tensile Response of Medial Collateral Ligament
,”
J. Orthop. Res.
,
31
(
8
), pp.
1226
1233
.
12.
DeLancey
,
J. O.
, and
Starr
,
R. A.
,
1990
, “
Histology of the Connection Between the Vagina and Levator Ani Muscles. Implications for Urinary Tract Function
,”
J. Reprod. Med.
,
35
(
8
), pp.
765
771
.https://www.ncbi.nlm.nih.gov/pubmed/2213737
13.
Tracy
,
P. V.
,
DeLancey
,
J. O.
, and
Ashton-Miller
,
J. A.
,
2016
, “
A Geometric Capacity-Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021001
.
14.
DeLancey
,
J. O.
,
Morgan
,
D. M.
,
Fenner
,
D. E.
,
Kearney
,
R.
,
Guire
,
K.
,
Miller
,
J. M.
,
Hussain
,
H.
,
Umek
,
W.
,
Hsu
,
Y.
, and
Ashton-Miller
,
J. A.
,
2007
, “
Comparison of Levator Ani Muscle Defects and Function in Women With and Without Pelvic Organ Prolapse
,”
Obstet. Gynecol.
,
109
(
2
), pp.
295
302
.
15.
Miklos
,
J. R.
,
Moore
,
R. D.
, and
Kohli
,
N.
,
2002
, “
Laparoscopic Surgery for Pelvic Support Defects
,”
Curr. Opin. Obstetr. Gynecol.
,
14
(
4
), pp.
387
395
.
16.
DeLancey
,
J.
,
1992
, “
Anatomic Aspects of Vaginal Eversion After Hysterectomy
,”
Am. J. Obstetr. Gynecol.
,
166
(
6
), pp.
1717
1724
.
17.
Becker
,
W. R.
, and
De Vita
,
R.
,
2015
, “
Biaxial Mechanical Properties of Swine Uterosacral and Cardinal Ligaments
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
549
560
.
18.
Tan
,
T.
,
Cholewa
,
N.
,
Case
,
S.
, and
De Vita
,
R.
,
2016
, “
Micro-Structural and Biaxial Creep Properties of the Swine Uterosacral–Cardinal Ligament Complex
,”
J. Biomed. Eng. Soc.
,
44
(
11
), pp.
3225
3237
.https://link.springer.com/article/10.1007%2Fs10439-016-1661-z
19.
Baah-Dwomoh
,
A.
, and
De Vita
,
R.
,
2017
, “
Effects of Repeated Biaxial Loads on the Creep Properties of Cardinal Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
128
141
.
20.
Rivaux
,
G.
,
Rubod
,
C.
,
Dedet
,
B.
,
Brieu
,
M.
,
Gabriel
,
B.
,
De Landscheere
,
L.
,
Devos
,
P.
,
Delmas
,
V.
, and
Cosson
,
M.
,
2011
, “
Biomechanical Characterisation of Uterine Ligaments. Implications for the Pelvic Floor
,”
Pelvi-Perineologie
,
6
(
2
), pp.
67
74
.
21.
Rivaux
,
G.
,
Rubod
,
C.
,
Dedet
,
B.
,
Brieu
,
M.
,
Gabriel
,
B.
, and
Cosson
,
M.
,
2013
, “
Comparative Analysis of Pelvic Ligaments: A Biomechanics Study
,”
Int. Urogynecol. J.
,
24
(
1
), pp.
135
139
.
22.
Rubod
,
C.
,
Brieu
,
M.
,
Cosson
,
M.
,
Rivaux
,
G.
,
Clay
,
J.-C.
,
de Landsheere
,
L.
, and
Gabriel
,
B.
,
2012
, “
Biomechanical Properties of Human Pelvic Organs
,”
Urology
,
79
(
4
), pp.
968.e917
968.e922
.
23.
Kerkhof
,
M. H.
,
Ruiz-Zapata
,
A. M.
,
Bril
,
H.
,
Bleeker
,
M. C.
,
Belien
,
J. A.
,
Stoop
,
R.
, and
Helder
,
M. N.
,
2014
, “
Changes in Tissue Composition of the Vaginal Wall of Premenopausal Women With Prolapse
,”
Am. J. Obstet. Gynecol.
,
210
(
2
), pp.
168.e161
168.e169
.
24.
Drewes
,
P. G.
,
Yanagisawa
,
H.
,
Starcher
,
B.
,
Hornstra
,
I.
,
Csiszar
,
K.
,
Marinis
,
S. I.
,
Keller
,
P.
, and
Word
,
R. A.
,
2007
, “
Pelvic Organ Prolapse in Fibulin-5 Knockout Mice—Pregnancy-Induced Changes in Elastic Fiber Homeostasis in Mouse Vagina
,”
Am. J. Pathol.
,
170
(
2
), pp.
578
589
.
25.
Rahn
,
D. D.
,
Ruff
,
M. D.
,
Brown
,
S. A.
,
Tibbals
,
H. F.
, and
Word
,
R. A.
,
2008
, “
Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
198
(
5
), pp.
590.e591
590.e596
.
26.
Rahn
,
D. D.
,
Acevedo
,
J. F.
, and
Word
,
R. A.
,
2008
, “
Effect of Vaginal Distention on Elastic Fiber Synthesis and Matrix Degradation in the Vaginal Wall: Potential Role in the Pathogenesis of Pelvic Organ Prolapse
,”
Am. J. Physiol. Regul. Integr. Comp. Physiol.
,
295
(
4
), pp.
R1351
R1358
.
27.
Downing
,
K. T.
,
Billah
,
M.
,
Raparia
,
E.
,
Shah
,
A.
,
Silverstein
,
M. C.
,
Ahmad
,
A.
, and
Boutis
,
G. S.
,
2014
, “
The Role of Mode of Delivery on Elastic Fiber Architecture and Vaginal Vault Elasticity: A Rodent Model Study
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
190
198
.
28.
Chen
,
B.
,
Wen
,
Y.
, and
Polan
,
M. L.
,
2004
, “
Elastolytic Activity in Women With Stress Urinary Incontinence and Pelvic Organ Prolapse
,”
Neurourol. Urodynam.
,
23
(
2
), pp.
119
126
.
29.
Liu
,
X.
,
Zhao
,
Y.
,
Pawlyk
,
B.
,
Damaser
,
M.
, and
Li
,
T.
,
2006
, “
Failure of Elastic Fiber Homeostasis Leads to Pelvic Floor Disorders
,”
Am. J. Pathol.
,
168
(
2
), pp.
519
528
.
30.
Wieslander
,
C. K.
,
Marinis
,
S. I.
,
Drewes
,
P. G.
,
Keller
,
P. W.
,
Acevedo
,
J. F.
, and
Word
,
R. A.
,
2008
, “
Regulation of Elastolytic Proteases in the Mouse Vagina During Pregnancy, Parturition, and Puerperium
,”
Biol. Reprod.
,
78
(
3
), pp.
521
528
.
31.
Rahn
,
D.
,
Acevedo
,
J.
,
Roshanravan
,
S.
,
Keller
,
P.
,
Davis
,
E.
,
Marmorstein
,
L.
, and
Word
,
R.
,
2009
, “
Failure of Pelvic Organ Support in Mice Deficient in Fibulin-3
,”
Am. J. Pathol.
,
174
(
1
), pp.
206
215
.
32.
Moalli
,
P. A.
,
Shand
,
S. H.
,
Zyczynski
,
H. M.
,
Gordy
,
S. C.
, and
Meyn
,
L. A.
,
2005
, “
Remodeling of Vaginal Connective Tissue in Patients With Prolapse
,”
Obstet. Gynecol.
,
106
(
5
), pp.
953
963
.
33.
Budatha
,
M.
,
Roshanravan
,
S.
,
Zheng
,
Q.
,
Weislander
,
C.
,
Chapman
,
S. L.
,
Davis
,
E. C.
,
Starcher
,
B.
,
Word
,
R. A.
, and
Yanagisawa
,
H.
,
2011
, “
Extracellular Matrix Proteases Contribute to Progression of Pelvic Organ Prolapse in Mice and Humans
,”
J. Clin. Invest.
,
121
(
5
), pp.
2048
2059
.
34.
Gosline
,
J.
,
Lillie
,
M.
,
Carrington
,
E.
,
Guerette
,
P.
,
Ortlepp
,
C.
, and
Savage
,
K.
,
2002
, “
Elastic Proteins: Biological Roles and Mechanical Properties
,”
Philos. Trans.: Biol. Sci.
,
357
(
1418
), pp.
121
132
.
35.
De Landsheere
,
L.
,
Munaut
,
C.
,
Nusgens
,
B.
,
Maillard
,
C.
,
Rubod
,
C.
,
Nisolle
,
M.
,
Cosson
,
M.
, and
Foidart
,
J.
,
2013
, “
Histology of the Vaginal Wall in Women With Pelvic Organ Prolapse: A Literature Review
,”
Int. Urogynecol. J.
, (
12
), pp.
2011
2020
.
36.
Oxlund
,
H.
,
Manschot
,
J.
, and
Viidik
,
A.
,
1988
, “
The Role of Elastin in the Mechanical Properties of Skin
,”
J. Biomech.
,
21
(
3
), pp.
213
218
.
37.
Wagenseil
,
J.
, and
Mecham
,
R.
,
2012
, “
Elastin in Large Artery Stiffness and Hypertension
,”
J. Cardiovasc. Transl. Res.
,
5
(
3
), pp.
264
273
.
38.
Starcher
,
B. C.
,
1986
, “
Elastin and the Lung
,”
Thorax
,
41
(
8
), pp.
577
585
.
39.
Peter
,
D. Y.
,
Robert
,
P. M.
, and
David
,
E. B.
,
1994
,
Extracellular Matrix Assembly and Structure
,
Elsevier Science
, Cambridge, MA.
40.
Mecham
,
R. P.
,
2018
, “
Elastin in Lung Development and Disease Pathogenesis
,”
Matrix Biol.
,
73
, pp.
6
20
.
41.
Frances
,
C.
, and
Robert
,
L.
,
1984
, “
Elastin and Elastic Fibers in Normal and Pathologic Skin
,”
Int. J. Dermatol.
,
23
(
3
), pp.
166
179
.
42.
Echenne
,
P. B.
,
Barneon
,
G. G.
,
Pages
,
G. M.
,
Caillens
,
G. J.
,
Guibal
,
G. C.
,
Jarrousse
,
G. Y.
,
Dimeglio
,
G. A.
, and
Pous
,
G. J.
,
1988
, “
Skin Elastic Fiber Pathology and Idiopathic Scoliosis
,”
J. Pediatr. Orthop.
,
8
(
5
), pp.
522
528
.
43.
Leppert
,
P. C.
,
Yu
,
S. Y.
,
Keller
,
S.
,
Cerreta
,
J.
, and
Mandl
,
I.
,
1987
, “
Decreased Elastic Fibers and Desmosine Content in Incompetent Cervix
,”
Am. J. Obstetr. Gynecol.
,
157
(
5
), pp.
1134
1139
.
44.
Jayyosi
,
C.
,
Lee
,
N.
,
Willcockson
,
A.
,
Nallasamy
,
S.
,
Mahendroo
,
M.
, and
Myers
,
K.
,
2018
, “
The Mechanical Response of the Mouse Cervix to Tensile Cyclic Loading in Term and Preterm Pregnancy
,”
Acta Biomater.
,
78
, pp.
308
319
.
45.
Nallasamy
,
S.
,
Yoshida
,
K.
,
Akins
,
M.
,
Myers
,
K.
,
Iozzo
,
R.
, and
Mahendroo
,
M.
,
2017
, “
Steroid Hormones are Key Modulators of Tissue Mechanical Function Via Regulation of Collagen and Elastic Fibers
,”
Endocrinology
,
158
(
4
), pp.
950
962
.
46.
Grant
,
T. M.
,
Yapp
,
C.
,
Chen
,
Q.
,
Czernuszka
,
J. T.
, and
Thompson
,
M. S.
,
2015
, “
The Mechanical, Structural, and Compositional Changes of Tendon Exposed to Elastase
,”
Ann. Biomed. Eng.
,
43
(
10
), pp.
2477
2486
.
47.
Henninger
,
H. B.
,
Valdez
,
W. R.
,
Scott
,
S. A.
, and
Weiss
,
J. A.
,
2015
, “
Elastin Governs the Mechanical Response of Medial Collateral Ligament Under Shear and Transverse Tensile Loading
,”
Acta Biomater.
,
25
, pp.
304
312
.
48.
Yuan
,
H.
,
Kononov
,
S.
,
Cavalcante
,
F.
, and
Lutchen
,
K.
,
2000
, “
Effects of Collagenase and Elastase on the Mechanical Properties of Lung Tissue Strips
,”
J. Appl. Physiol.
,
89
(
1
), pp.
3
14
.
49.
Jesudason
,
R.
,
Black
,
L.
,
Majumdar
,
A.
,
Stone
,
P.
, and
Suki
,
B.
,
2007
, “
Differential Effects of Static and Cyclic Stretching During Elastase Digestion on the Mechanical Properties of Extracellular Matrices
,”
J. Appl. Physiol.
,
103
(
3
), pp.
803
811
.
50.
López-Aguilar
,
J.
, and
Romero
,
P. V.
,
1998
, “
Effect of Elastase Pretreatment on Rat Lung Strip Induced Constriction
,”
Respir. Physiol.
,
113
(
3
), pp.
239
246
.
51.
Moretto
,
A.
,
Dallaire
,
M.
,
Romero
,
P.
, and
Ludwig
,
M.
,
1994
, “
Effect of Elastase on Oscillation Mechanics of Lung Parenchymal Strips
,”
J. Appl. Physiol.
,
77
(
4
), pp.
1623
1629
.
52.
Barbir
,
A.
,
Michalek
,
A. J.
,
Abbott
,
R. D.
, and
Iatridis
,
J. C.
,
2010
, “
Effects of Enzymatic Digestion on Compressive Properties of Rat Intervertebral Discs
,”
J. Biomech.
,
43
(
6
), pp.
1067
1073
.
53.
Fan
,
Y.
,
Zhao
,
J.
,
Liao
,
D.
, and
Gregersen
,
H.
,
2005
, “
The Effect of Digestion of Collagen and Elastin on Histomorphometry and the Zero-Stress State in Rat Esophagus
,”
Dig. Dis. Sci.
,
50
(
8
), pp.
1497
1505
.
54.
Collins
,
M.
,
Eberth
,
J.
,
Wilson
,
E.
, and
Humphrey
,
J.
,
2012
, “
Acute Mechanical Effects of Elastase on the Infrarenal Mouse Aorta: Implications for Models of Aneurysms
,”
J. Biomech.
,
45
(
4
), pp.
660
665
.
55.
Gundiah
,
N.
,
Babu
,
A. R.
, and
Pruitt
,
L. A.
,
2013
, “
Effects of Elastase and Collagenase on the Nonlinearity and Anisotropy of Porcine Aorta
,”
Physiol. Meas.
,
34
(
12
), pp.
1657
1673
.
56.
Bloksgaard
,
M.
,
Leurgans
,
T. M.
,
Spronek
,
B.
,
Heusinkveld
,
M. H. G.
,
Thorsted
,
B.
,
Rosenstand
,
K.
,
Nissen
,
I.
,
Hansen
,
U. M.
,
Brewer
,
J. R.
,
Bagatolli
,
L. A.
,
Rasniussen
,
L. M.
,
Irmukhamedov
,
A.
,
Reesink
,
K. D.
, and
De Mey
,
J. G. R.
,
2017
, “
Imaging and Modeling of Acute Pressure-Induced Changes of Collagen and Elastin Microarchitectures in Pig and Human Resistance Arteries
,”
Am. J. Physiol.
,
313
(
1
), pp.
H164
H178
.
57.
Zeinali-Davarani
,
S.
,
Chow
,
M.-J.
,
Turcotte
,
R.
, and
Zhang
,
Y.
,
2013
, “
Characterization of Biaxial Mechanical Behavior of Porcine Aorta Under Gradual Elastin Degradation
,”
J. Biomed. Eng. Soc.
,
41
(
7
), pp.
1528
1538
.
58.
Humphrey
,
J.
,
Kang
,
T.
,
Sakarda
,
P.
, and
Anjanappa
,
M.
,
1993
, “
Computer-Aided Vascular Experimentation: A New Electromechanical Test System
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
33
43
.
59.
Macrae
,
R. A.
,
Miller
,
K.
, and
Doyle
,
B. J.
,
2016
, “
Methods in Mechanical Testing of Arterial Tissue: A Review
,”
Strain
,
52
(
5
), pp.
380
399
.
60.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2007
, “
Biomechanical Properties of Vaginal Tissue. Part 1: New Experimental Protocol
,”
J. Urol.
,
178
(
1
), pp.
320
325
.
61.
Amin
,
M.
,
Le
,
V. P.
, and
Wagenseil
,
J. E.
,
2012
, “
Mechanical Testing of Mouse Carotid Arteries: From Newborn to Adult
,”
J. Vis. Exp.
, (
60
), p. 3733.
62.
Robison
,
K. M.
,
Conway
,
C. K.
,
Desrosiers
,
L.
,
Knoepp
,
L. R.
, and
Miller
,
K. S.
,
2017
, “
Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension-Inflation Testing
,”
ASME J. Biomech. Eng.
,
139
(
10
), p.
104504
.
63.
Ferruzzi
,
J.
,
Bersi
,
M.
, and
Humphrey
,
J.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.
64.
Cox
,
R. H.
,
1974
, “
Three-Dimensional Mechanics of Arterial Segments In Vitro: Methods
,”
J. Appl. Physiol.
,
36
(
3
), pp.
381
384
.
65.
Van Loon
,
P.
,
1977
, “
Length-Force and Volume-Pressure Relationships of Arteries
,”
Biorheology
,
14
(
4
), pp.
181
201
.
66.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer Science & Business Media
, New York.
67.
Le
,
V.
,
Yamashiro
,
Y.
,
Yanagisawa
,
H.
, and
Wagenseil
,
J.
,
2014
, “
Measuring, Reversing, and Modeling the Mechanical Changes Due to the Absence of Fibulin-4 in Mouse Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1081
1095
.
68.
Bersi
,
M. R.
,
Collins
,
M. J.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2013
, “
Disparate Changes in the Mechanical Properties of Murine Carotid Arteries and Aorta in Response to Chronic Infusion of Angiotensin-II
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
4
(
4
), pp.
228
240
.
69.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1/3
), pp.
1
48
.
70.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Constitutive Modelling of Arteries
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
466
(
2118
), pp.
1551
1597
.
71.
Ni Annaidh
,
A.
,
Bruyere
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Maurini
,
C.
,
Ottenio
,
M.
, and
Saccomandi
,
G.
,
2012
, “
Automated Estimation of Collagen Fibre Dispersion in the Dermis and Its Contribution to the Anisotropic Behaviour of Skin
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1666
1678
.
72.
Ogden
,
R. W.
,
2003
, “
Nonlinear Elasticity, Anisotropy, Material Stability and Residual Stresses in Soft Tissue
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer
,
Vienna, Austria
, pp.
65
108
.
73.
Gleason
,
R. L.
,
Dye
,
W. W.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2008
, “
Quantification of the Mechanical Behavior of Carotid Arteries From Wild-Type, Dystrophin-Deficient, and Sarcoglycan-Delta Knockout Mice
,”
J. Biomech.
,
41
(
15
), pp.
3213
3218
.
74.
Rynkevic
,
R.
,
Martins
,
P.
,
Hympanova
,
L.
,
Almeida
,
H.
,
Fernandes
,
A. A.
, and
Deprest
,
J.
,
2017
, “
Biomechanical and Morphological Properties of the Multiparous Ovine Vagina and Effect of Subsequent Pregnancy
,”
J. Biomech.
,
57
, pp.
94
102
.
75.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
76.
Price
,
K. V.
,
2005
, “
Differential Evolution a Practical Approach to Global Optimization
,”
Global Optimization
,
R. M.
Storn
and
J. A.
Lampinen
, eds.,
Springer
,
Berlin
.
77.
Akintunde
,
A.
, and
Miller
,
K.
,
2018
, “
Evaluation of Microstructurally Motivated Constitutive Models to Describe Age-Dependent Tendon Healing
,”
Biomech. Model. Mechanobiol.
,
17
(
3
), pp.
793
814
.
78.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.
79.
Udelsman
,
B. V.
,
Khosravi
,
R.
,
Miller
,
K. S.
,
Dean
,
E. W.
,
Bersi
,
M. R.
,
Rocco
,
K.
,
Yi
,
T.
,
Humphrey
,
J. D.
, and
Breuer
,
C. K.
,
2014
, “
Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation
,”
J. Biomech.
,
47
(
9
), pp.
2070
2079
.
80.
Ruifrok
,
A. C.
, and
Johnston
,
D. A.
,
2001
, “
Quantification of Histochemical Staining by Color Deconvolution
,”
Anal. Quant. Cytol. Histol.
,
23
(
4
), pp.
291
299
.https://www.ncbi.nlm.nih.gov/pubmed/11531144
81.
Team
,
R. C.
,
2016
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
.
82.
Dobrin
,
P. B.
,
Baker
,
W. H.
, and
Gley
,
W. C.
,
1984
, “
Elastolytic and Collagenolytic Studies of Arteries. Implications for the Mechanical Properties of Aneurysms
,”
Arch. Surg.
,
119
(
4
), pp.
405
409
.
83.
Karlinsky
,
J. B.
,
Catanese
,
A.
,
Honeychurch
,
C.
,
Sherter
,
C. B.
,
Hoppin
,
F. G.
, and
Snider
,
G. L.
,
1976
, “
In Vitro Effects of Elastase and Collagenase on Mechanical Properties of Hamster Lungs
,”
Chest
,
69
(
2 Suppl
.), pp.
275
276
.
84.
Cardamone
,
L.
,
Valentin
,
A.
,
Eberth
,
J.
, and
Humphrey
,
J.
,
2009
, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model. Mechanobiol.
,
8
(
6
), pp.
431
446
.
85.
Lee
,
T. C.
,
Midura
,
R. J.
,
Hascall
,
V. C.
, and
Vesely
,
I.
,
2001
, “
The Effect of Elastin Damage on the Mechanics of the Aortic Valve
,”
J. Biomech.
,
34
(
2
), pp.
203
210
.
86.
Miskolczi
,
L.
,
Guterman
,
L. R.
,
Flaherty
,
J. D.
,
Szikora
,
I.
, and
Hopkins
,
L. N.
,
1997
, “
Rapid Saccular Aneurysm Induction by Elastase Application In Vitro
,”
Neurosurgery
,
41
(
1
), pp.
220
228
.
87.
Greenwald
,
S. E.
,
Moore
,
J. E.
, Jr.,
Rachev
,
A.
,
Kane
,
T. P. C.
, and
Meister
,
J. J.
,
1997
, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
438
444
.
88.
Smith
,
L.
,
Byers
,
S.
,
Costi
,
J.
, and
Fazzalari
,
N.
,
2008
, “
Elastic Fibers Enhance the Mechanical Integrity of the Human Lumbar Anulus Fibrosus in the Radial Direction
,”
J. Biomed. Eng. Soc.
,
36
(
2
), pp.
214
223
.
89.
Fang
,
F.
, and
Lake
,
S. P.
,
2016
, “
Multiscale Mechanical Integrity of Human Supraspinatus Tendon in Shear After Elastin Depletion
,”
J. Mech. Behav. Biomed. Mater.
,
63
, pp.
443
455
.
90.
Woessner
,
J.
,
1963
, “
Formation and Breakdown of Collagen and Elastin in the Human Uterus During Pregnancy and Post-Partum Involution
,”
Biochem. J.
,
89
(
1
), pp.
75
82
.
91.
Liang
,
R.
,
Abramowitch
,
S.
,
Knight
,
K.
,
Palcsey
,
S.
,
Nolfi
,
A.
,
Feola
,
A.
,
Stein
,
S.
, and
Moalli
,
P. A.
,
2013
, “
Vaginal Degeneration Following Implantation of Synthetic Mesh With Increased Stiffness
,”
BJOG
,
120
(
2
), pp.
233
243
.
92.
Jallah
,
Z.
,
Liang
,
R.
,
Feola
,
A.
,
Barone
,
W.
,
Palcsey
,
S.
,
Abramowitch
,
S. D.
,
Yoshimura
,
N.
, and
Moalli
,
P.
,
2015
, “
The Impact of Prolapse Mesh on Vaginal Smooth Muscle Structure and Function
,”
BJOG
,
123
(
7
), pp.
1076
1085
.
93.
Alford
,
P.
,
Humphrey
,
J.
, and
Taber
,
L.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262
.
You do not currently have access to this content.