Severely calcified plaque is of great concern when planning and implementing a stenting intervention. In this work, computational models were developed to investigate the influence of calcium characteristics on stenting outcomes. The commonly used clinical measurements of calcium (i.e., the arc angle, maximum thickness, length, and volume) were varied to estimate stenting outcomes in terms of lumen gain, stent underexpansion, strut malapposition, and stress or strain distributions of the stenotic lesion. Results have shown that stenting outcomes were most sensitive to the arc angle of the calcium. A thick calcium with a large arc angle resulted in poor stenting outcomes, such as severe stent underexpansion, D-shaped lumen, increased strut malapposition, and large stresses or strains in the plaque. This was attributed to the circumferential stretch of the tissue. Specifically, the noncalcium component was stretched significantly more than the calcium. The circumferential stretch ratios of calcium and noncalcium component were approximately 1.44 and 2.35, respectively, regardless of calcium characteristics. In addition, the peak stress or strain within the artery and noncalcium component of the plaque occurred at the area adjacent to calcium edges (i.e., the interface between the calcium and the noncalcium component) coincident with the location of peak malapposition. It is worth noting that calcium played a protective role for the artery underneath, which was at the expense of the overstretch and stress concentrations in the other portion of the artery. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the impact of calcium quantifications on stent expansions, as well as to exploit their potential for a better preclinical strategy.

References

References
1.
Albrecht
,
D.
,
Kaspers
,
S.
,
Füssl
,
R.
,
Höpp
,
H. W.
, and
Sechtem
,
U.
,
1996
, “
Coronary Plaque Morphology Affects Stent Deployment: Assessment by Intracoronary Ultrasound
,”
Catheterization Cardiovasc. Interventions
,
38
(
3
), pp.
229
235
.
2.
Kawaguchi
,
R.
,
Tsurugaya
,
H.
,
Hoshizaki
,
H.
,
Toyama
,
T.
,
Oshima
,
S.
, and
Taniguchi
,
K.
,
2008
, “
Impact of Lesion Calcification on Clinical and Angiographic Outcome After Sirolimus-Eluting Stent Implantation in Real-World Patients
,”
Cardiovasc. Revasc. Med.
,
9
(
1
), pp.
2
8
.
3.
Fujii
,
K.
,
Carlier
,
S. G.
,
Mintz
,
G. S.
,
Yang
,
Y.-M.
,
Moussa
,
I.
,
Weisz
,
G.
,
Dangas
,
G.
,
Mehran
,
R.
,
Lansky
,
A. J.
, and
Kreps
,
E. M.
,
2005
, “
Stent Underexpansion and Residual Reference Segment Stenosis Are Related to Stent Thrombosis After Sirolimus-Eluting Stent Implantation: An Intravascular Ultrasound Study
,”
J. Am. Coll. Cardiol.
,
45
(
7
), pp.
995
998
.
4.
Foin
,
N.
,
Lu
,
S.
,
Ng
,
J.
,
Bulluck
,
H.
,
Hausenloy
,
D. J.
,
Wong
,
P. E.
,
Virmani
,
R.
, and
Joner
,
M.
,
2017
, “
Stent Malapposition and the Risk of Stent Thrombosis: Mechanistic Insights From an In Vitro Model
,”
EuroIntervention
,
13
(
9
), pp.
e1096
e1098
.
5.
Kim
,
B. K.
,
Hong
,
M. K.
,
Shin
,
D. H.
,
Kim
,
J. S.
,
Ko
,
Y. G.
,
Choi
,
D.
, and
Jang
,
Y.
,
2012
, “
Relationship Between Stent Malapposition and Incomplete Neointimal Coverage After Drug‐Eluting Stent Implantation
,”
J. Interventional Cardiol.
,
25
(
3
), pp.
270
277
.
6.
Greenland
,
P.
,
LaBree
,
L.
,
Azen
,
S. P.
,
Doherty
,
T. M.
, and
Detrano
,
R. C.
,
2004
, “
Coronary Artery Calcium Score Combined With Framingham Score for Risk Prediction in Asymptomatic Individuals
,”
JAMA
,
291
(
2
), pp.
210
215
.
7.
Detrano
,
R.
,
Guerci
,
A. D.
,
Carr
,
J. J.
,
Bild
,
D. E.
,
Burke
,
G.
,
Folsom
,
A. R.
,
Liu
,
K.
,
Shea
,
S.
,
Szklo
,
M.
, and
Bluemke
,
D. A.
,
2008
, “
Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups
,”
New Engl. J. Med.
,
358
(
13
), pp.
1336
1345
.
8.
Kobayashi
,
Y.
,
Okura
,
H.
,
Kume
,
T.
,
Yamada
,
R.
,
Kobayashi
,
Y.
,
Fukuhara
,
K.
,
Koyama
,
T.
,
Nezuo
,
S.
,
Neishi
,
Y.
,
Hayashida
,
A.
,
Kawamoto
,
T.
, and
Yoshida
,
K.
,
2014
, “
Impact of Target Lesion Coronary Calcification on Stent Expansion
,”
Circ. J.
,
78
(
9
), pp.
2209
2214
.
9.
Mintz
,
G. S.
,
Popma
,
J. J.
,
Pichard
,
A. D.
,
Kent
,
K. M.
,
Satler
,
L. F.
,
Chuang
,
Y. C.
,
Ditrano
,
C. J.
, and
Leon
,
M. B.
,
1995
, “
Patterns of Calcification in Coronary Artery Disease
,”
Circulation
,
91
(
7
), pp.
1959
1965
.
10.
Alegría-Barrero
,
E.
,
Chan
,
P. H.
,
Foin
,
N.
, and
Syrseloudis
,
D.
,
2013
, “
Predictors of Stent Strut Malapposition in Calcified Vessels Using Frequency-Domain Optical Coherence Tomography
,”
J. Invasive Cardiol.
,
25
(
9
), pp.
429
434
.https://www.invasivecardiology.com/articles/predictors-stent-strut-malapposition-calcified-vessels-using-frequency-domain-optical-coher
11.
Pregowski
,
J.
,
Jastrzebski
,
J.
,
Kępka
,
C.
,
Kruk
,
M.
,
Ciszewski
,
M.
,
Wolny
,
R.
,
Zalewska
,
J.
,
Chmielak
,
Z.
,
Karcz
,
M.
, and
Witkowski
,
A.
,
2013
, “
Relation Between Coronary Plaque Calcium Deposits as Described by Computed Tomography Coronary Angiography and Acute Results of Stent Deployment as Assessed by Intravascular Ultrasound
,”
Postępy Kardiol. Interwencyjnej
,
9
(
2
), pp.
115
120
.
12.
Maejima
,
N.
,
Hibi
,
K.
,
Saka
,
K.
,
Akiyama
,
E.
,
Konishi
,
M.
,
Endo
,
M.
,
Iwahashi
,
N.
,
Tsukahara
,
K.
,
Kosuge
,
M.
, and
Ebina
,
T.
,
2016
, “
Relationship Between Thickness of Calcium on Optical Coherence Tomography and Crack Formation After Balloon Dilatation in Calcified Plaque Requiring Rotational Atherectomy
,”
Circ. J.
,
80
(
6
), pp.
1413
1419
.
13.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
.
14.
Zhao
,
S.
,
Liu
,
X. C.
, and
Gu
,
L.
,
2012
, “
The Impact of Wire Stent Fabrication Technique on the Performance of Stent Placement
,”
ASME J. Med. Devices
,
6
(
1
), p.
011007
.
15.
Zhao
,
S.
, and
Gu
,
L.
,
2014
, “
Implementation and Validation of Aortic Remodeling in Hypertensive Rats
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091007
.
16.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Yamada
,
H.
, and
Razaghi
,
R.
,
2014
, “
A Nonlinear Finite Element Simulation of Balloon Expandable Stent for Assessment of Plaque Vulnerability Inside a Stenotic Artery
,”
Med. Biol. Eng. Comput.
,
52
(
7
), pp.
589
599
.
17.
Gao
,
H.
, and
Long
,
Q.
,
2008
, “
Effects of Varied Lipid Core Volume and Fibrous Cap Thickness on Stress Distribution in Carotid Arterial Plaques
,”
J. Biomech.
,
41
(
14
), pp.
3053
3059
.
18.
Wong
,
K. K.
,
Thavornpattanapong
,
P.
,
Cheung
,
S. C.
,
Sun
,
Z.
, and
Tu
,
J.
,
2012
, “
Effect of Calcification on the Mechanical Stability of Plaque Based on a Three-Dimensional Carotid Bifurcation Model
,”
BMC Cardiovasc. Disord.
,
12
(
1
), p.
7
.
19.
Timmins
,
L. H.
,
Meyer
,
C. A.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
, Jr
,
2008
, “
Effects of Stent Design and Atherosclerotic Plaque Composition on Arterial Wall Biomechanics
,”
J. Endovascular Ther.
,
15
(
6
), pp.
643
654
.
20.
Pericevic
,
I.
,
Lally
,
C.
,
Toner
,
D.
, and
Kelly
,
D. J.
,
2009
, “
The Influence of Plaque Composition on Underlying Arterial Wall Stress During Stent Expansion: The Case for Lesion-Specific Stents
,”
Med. Eng. Phys.
,
31
(
4
), pp.
428
433
.
21.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Finite Element Analysis of the Implantation of a Self-Expanding Stent: Impact of Lesion Calcification
,”
ASME J. Med. Devices
,
6
(
2
), p.
021001
.
22.
Lee
,
M. S.
, and
Shah
,
N.
,
2016
, “
The Impact and Pathophysiologic Consequences of Coronary Artery Calcium Deposition in Percutaneous Coronary Interventions
,”
J. Invasive Cardiol.
,
28
(
4
), pp.
160
167
.
23.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
On the Importance of Modeling Stent Procedure for Predicting Arterial Mechanics
,”
ASME J. Biomech. Eng.
,
134
(
12
), p.
121005
.
24.
Liang
,
D. K.
,
Yang
,
D. Z.
,
Qi
,
M.
, and
Wang
,
W. Q.
,
2005
, “
Finite Element Analysis of the Implantation of a Balloon-Expandable Stent in a Stenosed Artery
,”
Int. J. Cardiol.
,
104
(
3
), pp.
314
318
.
25.
Gastaldi
,
D.
,
Morlacchi
,
S.
,
Nichetti
,
R.
,
Capelli
,
C.
,
Dubini
,
G.
,
Petrini
,
L.
, and
Migliavacca
,
F.
,
2010
, “
Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
551
561
.
26.
Dunn
,
A.
,
Zaveri
,
T.
,
Keselowsky
,
B.
, and
Sawyer
,
W.
,
2007
, “
Macroscopic Friction Coefficient Measurements on Living Endothelial Cells
,”
Tribol. Lett.
,
27
(
2
), pp.
233
238
.
27.
Hoffmann
,
R.
,
Mintz
,
G.
,
Popma
,
J.
,
Satler
,
L.
,
Kent
,
K.
,
Pichard
,
A.
, and
Leon
,
M.
,
1998
, “
Treatment of Calcified Coronary Lesions With Palmaz–Schatz Stents: An Intravascular Ultrasound Study
,”
Eur. Heart J.
,
19
(
8
), pp.
1224
1231
.
28.
Vaquerizo
,
B.
,
Serra
,
A.
,
Miranda
,
F.
,
Triano
,
J. L.
,
Sierra
,
G.
,
Delgado
,
G.
,
Puentes
,
A.
,
Mojal
,
S.
, and
Brugera
,
J.
,
2010
, “
Aggressive Plaque Modification With Rotational Atherectomy and/or Cutting Balloon Before Drug‐Eluting Stent Implantation for the Treatment of Calcified Coronary Lesions
,”
J. Interventional Cardiol.
,
23
(
3
), pp.
240
248
.
29.
Fitzgerald
,
P. J.
,
Ports
,
T. A.
, and
Yock
,
P. G.
,
1992
, “
Contribution of Localized Calcium Deposits to Dissection After Angioplasty. An Observational Study Using Intravascular Ultrasound
,”
Circulation
,
86
(
1
), pp.
64
70
.
30.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Effects of Arterial Strain and Stress in the Prediction of Restenosis Risk: Computer Modeling of Stent Trials
,”
Biomed. Eng. Lett.
,
2
(
3
), pp.
158
163
.
31.
Gamero
,
L.
,
Armentano
,
R.
, and
Levenson
,
J.
,
2002
, “
Arterial Wall Diameter and Viscoelasticity Variability
,”
Computers in Cardiology
, Memphis, TN, Sept. 22–25, pp.
513
516
.
You do not currently have access to this content.