Nowadays, both usability and comfort play a key role in the development of medical and wearable products. When designing any device that is in contact with the human body, the mechanical behavior of the embraced soft tissue must be known. The unavoidable displacement of the soft tissue during motion may lead to discomfort and, thus, the removal of the wearable product. This paper presents a new methodology to design and test a wearable device based on the measurement of the dynamic skin strain field. Furthermore, from this field, the anatomical lines with minimum strain (lines of nonextension (LoNEs)) are calculated to design the structural parts of the wearable device. With this new criterion, the resulting product is not only optimized to reduce the friction in skin-device interface, but fully personalized to the patient's morphology and motion. The methodology is applied to the design of an ankle-foot wearable orthosis for subjects with ankle dorsiflexors muscles weakness due to nervous system disorders. The results confirm that the use of LoNEs may benefit the design of products with a high interaction with the skin.

References

References
1.
Herr
,
H.
,
2009
, “
Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
21
.
2.
Agache
,
P.
,
Monneur
,
C.
,
Leveque
,
J.
, and
De Rigal
,
J.
,
1980
, “
Mechanical Properties and Young's Modulus of Human Skin In Vivo
,”
Arch. Dermatol. Res.
,
269
(
3
), pp.
221
232
.
3.
Geerligs
,
M.
,
Van Breemen
,
L.
,
Peters
,
G.
,
Ackermans
,
P.
,
Baaijens
,
F.
, and
Oomens
,
C.
,
2011
, “
In Vitro Indentation to Determine the Mechanical Properties of Epidermis
,”
J. Biomech.
,
44
(
6
), pp.
1176
1181
.
4.
Hendriks
,
F.
,
Brokken
,
D.
,
Oomens
,
C.
,
Bader
,
D.
, and
Baaijens
,
F.
,
2006
, “
The Relative Contributions of Different Skin Layers to the Mechanical Behavior of Human Skin In Vivo Using Suction Experiments
,”
Med. Eng. Phys.
,
28
(
3
), pp.
259
266
.
5.
Annaidh
,
A. N.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Otténio
,
M.
,
2012
, “
Characterization of the Anisotropic Mechanical Properties of Excised Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
139
148
.
6.
Wehner
,
M.
,
Quinlivan
,
B.
,
Aubin
,
P. M.
,
Martinez-Villalpando
,
E.
,
Baumann
,
M.
,
Stirling
,
L.
,
Holt
,
K.
,
Wood
,
R.
, and
Walsh
,
C.
,
2013
, “
A Lightweight Soft Exosuit for Gait Assistance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
3362
3369
.
7.
Kwiatkowska
,
M.
,
Franklin
,
S.
,
Hendriks
,
C.
, and
Kwiatkowski
,
K.
,
2009
, “
Friction and Deformation Behaviour of Human Skin
,”
Wear
,
267
(
5–8
), pp.
1264
1273
.
8.
Pons
,
J. L.
,
2008
,
Wearable Robots: Biomechatronic Exoskeletons
,
Wiley
,
Hoboken, NJ
.
9.
Gemperle
,
F.
,
Kasabach
,
C.
,
Stivoric
,
J.
,
Bauer
,
M.
, and
Martin
,
R.
,
1998
, “
Design for Wearability
,”
Digest of Papers, Second International Symposium on Wearable Computers
, Pittsburgh, PA, Oct. 19–20, pp.
116
122
.
10.
Domingues
,
A.
,
Marreiros
,
S.
,
Martins
,
J.
,
Silva
,
M.
, and
Newman
,
D.
,
2012
, “
Analysis of Ankle Skin Deformation for the Development of Soft Orthotics
,”
J. Biomech.
,
45
(Suppl. 1), p.
S203
.
11.
Seo
,
H.
,
Kim
,
S.-J.
,
Cordier
,
F.
,
Choi
,
J.
, and
Hong
,
K.
,
2013
, “
Estimating Dynamic Skin Tension Lines In Vivo Using 3D Scans
,”
Comput.-Aided Des.
,
45
(
2
), pp.
551
555
.
12.
Bethke
,
K.
,
2005
, “
The Second Skin Approach: Skin Strain Field Analysis and Mechanical Counter Pressure Prototyping for Advanced Spacesuit Design
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
13.
Wolfrum
,
N.
,
Newman
,
D.
, and
Bethke
,
K.
,
2006
, “
An Automatic Procedure to Map the Skin Strain Field With Application to Advanced Locomotion Space Suit Design
,”
J. Biomech.
,
39
(Suppl. 1), p.
S393
.
14.
Marreiros Pereira
,
S.
,
2010
, “
Skin Strain Field Analysis of the Human Ankle Joint
,”
Relation
,
2
, pp.
2
7
.https://fenix.tecnico.ulisboa.pt/downloadFile/395142220612/Artigo%20-%20Tese%20(57274).pdf
15.
Yoneyama
,
S.
,
2010
, “
Computing Strain Distributions From Measured Displacements on a Three-Dimensional Surface
,”
Jpn. Soc. Mech. Eng.
,
10
(
SI
), pp.
s113
s118
.
16.
Marecki
,
A. T.
,
2012
, “
Skin Strain Analysis Software for the Study of Human Skin Deformation
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/74986
17.
Wessendorf
,
A. M.
, and
Newman
,
D. J.
,
2012
, “
Dynamic Understanding of Human-Skin Movement and Strain-Field Analysis
,”
IEEE Trans. Biomed. Eng.
,
59
(
12
), pp.
3432
3438
.
18.
Choi
,
J.
, and
Hong
,
K.
,
2015
, “
3D Skin Length Deformation of Lower Body During Knee Joint Flexion for the Practical Application of Functional Sportswear
,”
Appl. Ergon.
,
48
, pp.
186
201
.
19.
Iberall
,
A. S.
,
1964
, “
The Use of Lines of Nonextension to Improve Mobility in Full-Pressure Suits. AMRL-TR-64-118
,”
Aerospace Medical Research Laboratories (6570th)
, p.
1
.
20.
Newman
,
D.
,
Hoffman
,
J.
,
Bethke
,
K.
,
Blaya
,
J.
,
Carr
,
C.
, and
Pitts
,
B.
,
2005
, “
Astronaut Bio-Suit System for Exploration Class Missions
,” Massachusetts Institute of Technology, Cambridge, MA, NIAC Phase II Final Report.
21.
Bethke
,
K.
,
Newman
,
D. J.
, and
Radovitzky
,
R.
,
2005
, “
Creating a Skin Strain Field Map With Application to Advanced Locomotion Spacesuit Design
,”
20th Congress of the International Society of Biomechanics
, Cleveland, OH, July 31–Aug. 5.https://isbweb.org/images/conf/2005/abstracts/0952.pdf
22.
Obropta
,
E. W.
, and
Newman
,
D. J.
,
2015
, “
A Comparison of Human Skin Strain Fields of the Elbow Joint for Mechanical Counter Pressure Space Suit Development
,”
IEEE
Aerospace Conference,
Big Sky, MT, Mar. 7–14, pp.
1
9
.
23.
Lin
,
B.
,
Moerman
,
K. M.
,
McMahan
,
C. G.
,
Pasch
,
K. A.
, and
Herr
,
H. M.
,
2017
, “
Low-Cost Methodology for Skin Strain Measurement of a Flexed Biological Limb
,”
IEEE Trans. Biomed. Eng.
,
64
(12), pp. 2750–2759.
24.
Silva
,
P. C.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2010
, “
Evaluation of the Contact Forces Developed in the Lower Limb/Orthosis Interface for Comfort Design
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
367
388
.
25.
Tran
,
H.
,
Charleux
,
F.
,
Rachik
,
M.
,
Ehrlacher
,
A.
, and
Ho Ba Tho
,
M.
,
2007
, “
In Vivo Characterization of the Mechanical Properties of Human Skin Derived From MRI and Indentation Techniques
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
401
407
.
26.
Hendriks
,
F. M.
,
Brokken
,
D.
,
van Eemeren
,
J. T.
,
Oomens
,
C. W.
,
Baaijens
,
F. P.
, and
Horsten
,
J. B.
,
2003
, “
A Numerical-Experimental Method to Characterize the Non-Linear Mechanical Behaviour of Human Skin
,”
Skin Res. Technol.
,
9
(
3
), pp.
274
283
.
27.
Van den Herrewegen
,
I.
,
Cuppens
,
K.
,
Broeckx
,
M.
,
Barisch-Fritz
,
B.
,
Vander Sloten
,
J.
,
Leardini
,
A.
, and
Peeraer
,
L.
,
2014
, “
Dynamic 3D Scanning as a Markerless Method to Calculate Multi-Segment Foot Kinematics During Stance Phase: Methodology and First Application
,”
J. Biomech.
,
47
(
11
), pp.
2531
2539
.
28.
Thabet
,
A. K.
,
Trucco
,
E.
,
Salvi
,
J.
,
Wang
,
W.
, and
Abboud
,
R. J.
,
2014
, “
Dynamic 3D Shape of the Plantar Surface of the Foot Using Coded Structured Light: A Technical Report
,”
J. Foot Ankle Res.
,
7
(
1
), pp.
1
12
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903035/
29.
Kimura
,
M.
,
Mochimaru
,
M.
, and
Kanade
,
T.
,
2008
, “
Measurement of 3D Foot Shape Deformation in Motion
,”
Fifth ACM/IEEE International Workshop on Projector Camera Systems,
Bali Way, CA, Aug. 20, p.
10
.
30.
Evans
,
S. L.
, and
Holt
,
C. A.
,
2009
, “
Measuring the Mechanical Properties of Human Skin In Vivo Using Digital Image Correlation and Finite Element Modelling
,”
J. Strain Anal. Eng.
,
44
(
5
), pp.
337
345
.
31.
Mahmud
,
J.
,
Evans
,
S.
, and
Holt
,
C.
,
2010
, “
An Innovative Application of a Small-Scale Motion Analysis Technique to Quantify Human Skin Deformation In Vivo
,”
J. Biomech.
,
43
(
5
), pp.
1002
1006
.
32.
Pailler-Mattei
,
C.
,
Bec
,
S.
, and
Zahouani
,
H.
,
2008
, “
In Vivo Measurements of the Elastic Mechanical Properties of Human Skin by Indentation Tests
,”
Med. Eng. Phys.
,
30
(
5
), pp.
599
606
.
33.
Lim
,
K.
,
Chew
,
C.
,
Chen
,
P.
,
Jeyapalina
,
S.
,
Ho
,
H.
,
Rappel
,
J.
, and
Lim
,
B.
,
2008
, “
New Extensometer to Measure In Vivo Uniaxial Mechanical Properties of Human Skin
,”
J. Biomech.
,
41
(
5
), pp.
931
936
.
34.
Obropta
,
E. W.
,
2015
, “
On the Deformation of Human Skin for Mechanical Counter Pressure Space Suit Development
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/98588
35.
Miura
,
N.
,
Arikawa
,
S.
,
Yoneyama
,
S.
,
Koike
,
M.
,
Murakami
,
M.
, and
Tanno
,
O.
,
2012
, “
Digital Image Correlation Strain Analysis for the Study of Wrinkle Formation on Facial Skin
,”
J. Solid Mech. Mater. Eng.
,
6
(
6
), pp.
545
554
.
36.
Staloff
,
I. A.
,
Guan
,
E.
,
Katz
,
S.
,
Rafailovitch
,
M.
,
Sokolov
,
A.
, and
Sokolov
,
S.
,
2008
, “
An In Vivo Study of the Mechanical Properties of Facial Skin and Influence of Aging Using Digital Image Speckle Correlation
,”
Skin Res. Technol.
,
14
(
2
), pp.
127
134
.
37.
Mahmud
,
J.
,
Evans
,
S.
, and
Holt
,
C.
,
2012
, “
An Innovative Tool to Measure Human Skin Strain Distribution In Vivo Using Motion Capture and Delaunay Mesh
,”
J. Mech.
,
28
(
2
), pp.
309
317
.
38.
Domingues
,
A. R.
,
Marreiros
,
S. P.
,
Martins
,
J. M.
,
Silva
,
M. T.
, and
Newman
,
D. J.
,
2011
, “
Skin Strain Field Analysis of the Human Ankle Joint
,”
4 °Congresso Nacional De Biomecânica (CNB2011)
, pp. 1–10.
39.
Barrios-Muriel
,
J.
,
Sánchez
,
A.
,
Javier
,
F.
,
Salgado
,
D. R.
, and
Romero-Sánchez
,
F.
,
2017
, “
A New Methodology to Identify Minimum Strain Anatomical Lines Based on 3-D Digital Image Correlation
,”
Mech. Sci.
,
8
(
2
), pp.
337
347
.
40.
Luo
,
P.
,
Chao
,
Y.
,
Sutton
,
M.
, and
Peters
,
W.-H.
,
1993
, “
Accurate Measurement of Three-Dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision
,”
Exp. Mech.
,
33
(
2
), pp.
123
132
.
41.
Tang
,
Z.
,
Liang
,
J.
,
Xiao
,
Z.
, and
Guo
,
C.
,
2012
, “
Large Deformation Measurement Scheme for 3D Digital Image Correlation Method
,”
Opt. Lasers Eng.
,
50
(
2
), pp.
122
130
.
42.
Abdel-Aziz
,
Y.
,
1971
, “
Direct Linear Transformation Into Object Space Coordinates in Close-Range Photogrammetry
,”
Symposium on Close-Range Photogrammetry
, Urbana-Champaign, IL, pp.
1
18
.
43.
Hatze
,
H.
,
1988
, “
High-Precision Three-Dimensional Photogrammetric Calibration and Object Space Reconstruction Using a Modified DLT-Approach
,”
J. Biomech.
,
21
(
7
), pp.
533
538
.
44.
Genovese
,
K.
,
Lee
,
Y.
, and
Humphrey
,
J.
,
2011
, “
Novel Optical System for In Vitro Quantification of Full Surface Strain Fields in Small Arteries—I: Theory and Design
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
3
), pp.
213
225
.
45.
Pan
,
B.
,
Xie
,
H.
,
Guo
,
Z.
, and
Hua
,
T.
,
2007
, “
Full-Field Strain Measurement Using a Two-Dimensional Savitzky–Golay Digital Differentiator in Digital Image Correlation
,”
Opt. Eng.
,
46
(
3
), p.
033601
.
46.
Pan
,
B.
,
Xie
,
H.
, and
Wang
,
Z.
,
2010
, “
Equivalence of Digital Image Correlation Criteria for Pattern Matching
,”
Appl. Opt.
,
49
(
28
), pp.
5501
5509
.
47.
Tang
,
Z.-Z.
,
Liang
,
J.
,
Xiao
,
Z.-Z.
,
Guo
,
C.
, and
Hu
,
H.
,
2010
, “
Three-Dimensional Digital Image Correlation System for Deformation Measurement in Experimental Mechanics
,”
Opt. Eng.
,
49
(
10
), p.
103601
.
48.
Quan
,
C.
,
Tay
,
C. J.
,
Sun
,
W.
, and
He
,
X.
,
2008
, “
Determination of Three-Dimensional Displacement Using Two-Dimensional Digital Image Correlation
,”
Appl. Opt.
,
47
(
4
), pp.
583
593
.
49.
Yoneyama
,
S.
,
2011
, “
Smoothing Measured Displacements and Computing Strains Utilising Finite Element Method
,”
Strain
,
47
(
S2
), pp.
258
266
.
50.
Begonia
,
M.
,
Dallas
,
M.
,
Johnson
,
M. L.
, and
Thiagarajan
,
G.
,
2017
, “
Comparison of Strain Measurement in the Mouse Forearm Using Subject-Specific Finite Element Models, Strain Gaging, and Digital Image Correlation
,”
Biomech. Model. Mechanobiol.
,
16
(
4
), pp.
1243
1253
.
51.
Bae
,
S.-H.
, and
Choi
,
B. K.
,
2002
, “
NURBS Surface Fitting Using Orthogonal Coordinate Transform for Rapid Product Development
,”
Comput.-Aided Des.
,
34
(
10
), pp.
683
690
.
52.
Ye
,
X.
,
Liu
,
H.
,
Chen
,
L.
,
Chen
,
Z.
,
Pan
,
X.
, and
Zhang
,
S.
,
2008
, “
Reverse Innovative Design—An Integrated Product Design Methodology
,”
Comput.-Aided Des.
,
40
(
7
), pp.
812
827
.
53.
Concheiro
,
R.
,
Amor
,
M.
,
Padrón
,
E. J.
, and
Doggett
,
M.
,
2014
, “
Interactive Rendering of NURBS Surfaces
,”
Comput.-Aided Des.
,
56
, pp.
34
44
.
54.
Mavroidis
,
C.
,
Ranky
,
R. G.
,
Sivak
,
M. L.
,
Patritti
,
B. L.
,
DiPisa
,
J.
,
Caddle
,
A.
,
Gilhooly
,
K.
,
Govoni
,
L.
,
Sivak
,
S.
,
Lancia
,
M.
,
Drillio
,
R.
, and
Bonato
,
P.
,
2011
, “
Patient Specific Ankle-Foot Orthoses Using Rapid Prototyping
,”
J. Neuroeng. Rehabil.
,
8
(
1
), p.
1
.
55.
Schrank
,
E. S.
,
Hitch
,
L.
,
Wallace
,
K.
,
Moore
,
R.
, and
Stanhope
,
S. J.
,
2013
, “
Assessment of a Virtual Functional Prototyping Process for the Rapid Manufacture of Passive-Dynamic Ankle-Foot Orthoses
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101011
.
56.
Palousek
,
D.
,
Rosicky
,
J.
,
Koutny
,
D.
,
Stoklásek
,
P.
, and
Navrat
,
T.
,
2014
, “
Pilot Study of the Wrist Orthosis Design Process
,”
Rapid Prototyping J.
,
20
(
1
), pp.
27
32
.
You do not currently have access to this content.