Human gait is the result of a complex and fascinating cooperation between different joints and segments in the lower extremity. This study aims at investigating the existence of this cooperation or the so-called synergy between the shank motion and the ankle motion. One potential use of this synergy is to develop the high level controllers for active foot prostheses/orthoses. The central point in this paper is to develop a high level controller that is able to continuously map shank kinematics (inputs) to ankle angles and torques (outputs). At the same time, it does not require speed determination, gait percent identification, switching rules, and look-up tables. Furthermore, having those targets in mind, an important part of this study is to determine which input type is required to achieve such targets. This should be fulfilled through using minimum number of inputs. To do this, the Gaussian process (GP) regression has been used to estimate the ankle angles and torques for 11 subjects at three walking speeds (0.5, 1, and 1.5 m/s) based on the shank angular velocity and angle. The results show that it is possible to estimate ankle motion based on the shank motion. It was found that the estimation achieved less quality with only shank angular velocity or angle, whereas the aggregated angular velocity and angle resulted in much higher output estimation quality. In addition, the estimation quality was acceptable for the speeds that there was a training procedure before and when it was tested for the untrained speeds, the estimation quality was not as acceptable as before. The pros and cons of the proposed method are investigated at different scenarios.

References

References
1.
Borghese
,
N. A.
,
Bianchi
,
L.
, and
Lacquaniti
,
F.
,
1996
, “
Kinematic Determinants of Human Locomotion
,”
J. Physiol.
,
494
(
3
), pp.
863
879
.
2.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.
3.
Hitt
,
J.
,
Sugar
,
T.
,
Holgate
,
M.
,
Bellman
,
R.
, and
Hollander
,
K.
,
2009
, “
Robotic Transtibial Prosthesis With Biomechanical Energy Regeneration
,”
Ind. Rob. Int. J.
,
36
(
5
), pp.
441
447
.
4.
Sup
,
F.
,
Varol
,
H.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
,
2009
, “
Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Kyoto, Japan, June 23–26, pp.
638
644
.
5.
Cherelle
,
P.
,
Matthys
,
A.
,
Grosu
,
V.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2012
, “
The Amp-Foot 2.0: Mimicking Intact Ankle Behavior With a Powered Transtibial Prosthesis
,”
Fourth IEEE RAS and EMBS Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Rome, Italy, June 24–27, pp.
544
549
.
6.
Postema
,
K.
,
Hermens
,
H.
,
De Vries
,
J.
,
Koopman
,
H.
, and
Eisma
,
W.
,
1997
, “
Energy Storage and Release of Prosthetic Feet—Part 1: Biomechanical Analysis Related to User Benefits
,”
Prosthet. Orthot. Int.
,
21
(
1
), pp.
17
27
.http://journals.sagepub.com/doi/pdf/10.3109/03093649709164526
7.
Cain
,
S. M.
,
Gordon
,
K. E.
, and
Ferris
,
D. P.
,
2007
, “
Locomotor Adaptation to a Powered Ankle-Foot Orthosis Depends on Control Method
,”
J. Neuroeng. Rehabil.
,
4
(
1
), p.
48
.
8.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.
9.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of an Active Electrical Knee and Ankle Prosthesis
,”
IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Scottsdale, AZ, Oct. 19–22, pp.
523
528
.
10.
Holgate
,
M.
,
Sugar
,
T.
, and
Bohler
,
A.
,
2009
, “
A Novel Control Algorithm for Wearable Robotics Using Phase Plane Invariants
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
3845
3850
.
11.
Au
,
S.
,
Bonato
,
P.
, and
Herr
,
H.
,
2005
, “
An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Chicago, IL, June 28–July 1, pp.
375
379
.
12.
Ferris
,
D. P.
,
Gordon
,
K. E.
,
Sawicki
,
G. S.
, and
Peethambaran
,
A.
,
2006
, “
An Improved Powered Ankle–Foot Orthosis Using Proportional Myoelectric Control
,”
Gait Posture
,
23
(
4
), pp.
425
428
.
13.
Koller
,
J. R.
,
Remy
,
C. D.
, and
Ferris
,
D. P.
,
2017
, “
Comparing Neural Control and Mechanically Intrinsic Control of Powered Ankle Exoskeletons
,” IEEE
International Conference on Rehabilitation Robotics
(
ICORR
), London, July 17–20, pp.
294
299
.
14.
Varol
,
H.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2010
, “
Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
542
551
.
15.
Varol
,
H.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2009
, “
Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis
,”
IEEE International Conference on Rehabilitation Robotics
, (
ICORR
), Kyoto, Japan, June 23–26, pp.
645
651
.
16.
Varol
,
H.
,
Sup
,
F.
, and
Goldfarb
,
M.
,
2009
, “
Real-Time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking
,” IEEE RAS and EMBS
International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Scottsdale, AZ, Oct. 19–22, pp.
66
72
.
17.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.
18.
Eilenberg
,
M.
,
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
2
), pp.
164
173
.
19.
Hollander
,
K. W.
, and
Sugar
,
T. G.
,
2007
, “
A Robust Control Concept for Robotic Ankle Gait Assistance
,”
IEEE 10th International Conference on Rehabilitation Robotics
, (
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
119
123
.
20.
Oymagil
,
A. M.
,
Hitt
,
J. K.
,
Sugar
,
T.
, and
Fleeger
,
J.
,
2007
, “
Control of a Regenerative Braking Powered Ankle Foot Orthosis
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
28
34
.
21.
Huang
,
H.
,
Zhang
,
F.
,
Hargrove
,
L. J.
,
Dou
,
Z.
,
Rogers
,
D. R.
, and
Englehart
,
K. B.
,
2011
, “
Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular–Mechanical Fusion
,”
IEEE Trans. Biomed. Eng.
,
58
(
10
), pp.
2867
2875
.
22.
Farmer
,
S.
,
Silver-Thorn
,
B.
,
Voglewede
,
P.
, and
Beardsley
,
S. A.
,
2014
, “
Within-Socket Myoelectric Prediction of Continuous Ankle Kinematics for Control of a Powered Transtibial Prosthesis
,”
J. Neural Eng.
,
11
(
5
), p.
056027
.
23.
Grimmer
,
M.
,
Eslamy
,
M.
,
Gliech
,
S.
, and
Seyfarth
,
A.
,
2012
, “
A Comparison of Parallel- and Series Elastic Elements in an Actuator for Mimicking Human Ankle Joint in Walking and Running
,”
IEEE International Conference Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
2463
2470
.
24.
Eslamy
,
M.
,
Grimmer
,
M.
, and
Seyfarth
,
A.
,
2012
, “
Effects of Unidirectional Parallel Springs on Required Peak Power and Energy in Powered Prosthetic Ankles: Comparison Between Different Active Actuation Concepts
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Guangzhou, China, Dec. 11–14, pp.
2406
2412
.
25.
Kilicarslan
,
A.
,
Prasad
,
S.
,
Grossman
,
R. G.
, and
Contreras-Vidal
,
J. L.
,
2013
, “
High Accuracy Decoding of User Intentions Using EEG to Control a Lower-Body Exoskeleton
,”
35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Osaka, Japan, July 3–7, pp.
5606
5609
.
26.
Huang
,
H.
,
Kuiken
,
T.
, and
Lipschutz
,
R.
,
2009
, “
A Strategy for Identifying Locomotion Modes Using Surface Electromyography
,”
IEEE Trans. Biomed. Eng.
,
56
(1), pp.
65
73
.
27.
Young
,
A. J.
,
Simon
,
A. M.
,
Fey
,
N. P.
, and
Hargrove
,
L. J.
,
2013
, “
Classifying the Intent of Novel Users During Human Locomotion Using Powered Lower Limb Prostheses
,”
International IEEE/EMBS Conference on Neural Engineering
(
NER
), San Diego, CA, Nov. 6–8, pp.
311
314
.
28.
Young
,
A. J.
,
Simon
,
A. M.
,
Fey
,
N. P.
, and
Hargrove
,
L. J.
,
2014
, “
Intent Recognition in a Powered Lower Limb Prosthesis Using Time History Information
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
631
641
.
29.
Varol
,
H.
, and
Goldfarb
,
M.
,
2007
, “
Real-Time Intent Recognition for a Powered Knee and Ankle Transfemoral Prosthesis
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR
), Noordwijk, The Netherlands, June 13–15, pp.
16
23
.
30.
Scandaroli
,
G. G.
,
Borges
,
G. A.
,
Ishihara
,
J. Y.
,
Terra
,
M. H.
,
da Rocha
,
A. F.
, and
de Oliveira Nascimento
,
F. A.
,
2009
, “
Estimation of Foot Orientation With respect to Ground for an above Knee Robotic Prosthesis
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
1112
1117
.
31.
Grimes
,
D.
,
Flowers
,
W.
, and
Donath
,
M.
,
1977
, “
Feasibility of an Active Control Scheme for Above Knee Prostheses
,”
ASME J. Biomech. Eng.
,
99
(
4
), pp.
215
221
.
32.
Grimes
,
D. L.
,
1979
, “
An Active Multi-Mode Above Knee Prosthesis Controller
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
33.
Vallery
,
H.
,
Van Asseldonk
,
E. H.
,
Buss
,
M.
, and
van der Kooij
,
H.
,
2009
, “
Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
23
30
.
34.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
35.
Xiloyannis
,
M.
,
Gavriel
,
C.
,
Thomik
,
A. A.
, and
Faisa
,
A. A.
,
2015
, “
Gaussian Process Regression for Accurate Prediction of Prosthetic Limb Movements From the Natural Kinematics of Intact Limbs
,”
7th International IEEE/EMBS Conference on Neural Engineering
(
NER
), Montpellier, France, Apr. 22–24, pp.
659
662
.
36.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.
37.
Mathur
,
N.
,
Glesk
,
I.
, and
Buis
,
A.
,
2016
, “
Skin Temperature Prediction in Lower Limb Prostheses
,”
IEEE J. Biomed. Health Inf.
,
20
(
1
), pp.
158
165
.
38.
Ogata
,
K.
,
2002
,
Modern Control Engineering
,
4th ed
,
Prentice Hall
,
Upper Saddle River, NJ
.
39.
Lipfert
,
S.
,
2010
,
Kinematic and Dynamic Similarities Between Walking and Running
,
Verlag Dr. Kovac
,
Hamburg, Germany
.
40.
Whittle
,
M. W.
,
2003
,
Gait Analysis: An Introduction.
Butterworth-Heinemann
,
Oxford, UK
.
41.
Goulermas
,
J.
,
Howard
,
D.
,
Nester
,
C.
,
Jones
,
R.
, and
Ren
,
L.
,
2005
, “
Regression Techniques for the Prediction of Lower Limb Kinematics
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
1020
1024
.
42.
Findlow
,
A.
,
Goulermas
,
J.
,
Nester
,
C.
,
Howard
,
D.
, and
Kenney
,
L.
,
2008
, “
Predicting Lower Limb Joint Kinematics Using Wearable Motion Sensors
,”
Gait Posture
,
28
(
1
), pp.
120
126
.
43.
Ardestani
,
M. M.
,
Zhang
,
X.
,
Wang
,
L.
,
Lian
,
Q.
,
Liu
,
Y.
,
He
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2014
, “
Human Lower Extremity Joint Moment Prediction: A Wavelet Neural Network Approach
,”
Expert Syst. Appl.
,
41
(
9
), pp.
4422
4433
.
44.
Bogey
,
R. A.
, and
Barnes
,
L. A.
,
2017
, “
An EMG-to-Force Processing Approach for Estimating In Vivo Hip Muscle Forces in Normal Human Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
8
), pp.
1172
1179
.
45.
Eslamy
,
M.
,
2014
, “
Emulation of Ankle Function for Different Gaits Through Active Foot Prosthesis: Actuation Concepts, Control and Experiments
,” Ph.D. thesis, Technische Universität, Darmstadt, Germany.
46.
Al-Amri
,
M.
,
Nicholas
,
K.
,
Button
,
K.
,
Sparkes
,
V.
,
Sheeran
,
L.
, and
Davies
,
J. L.
,
2018
, “
Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity
,”
Sensors
,
18
(
3
), pp.
719
747
.
You do not currently have access to this content.