The microstructure at the interface of cortical and cancellous bone is quite complicated. The fracture mechanisms at this location are necessary for understanding the comprehensive fracture of the whole bone. The goal of this study is to identify fracture toughness in terms of J integral and fracture mechanism at the interface between cortical and cancellous bone. For this purpose, single edge notch bend (SENB) specimens were prepared from bovine proximal femur according to ASTM-E399 standard. Bone samples were prepared such that half of the sample width consists of cortical bone and other half of the width was cancellous bone; this interfacial bone is referred as a corticellous bone. Elastic–plastic fracture mechanics was used to measure fracture toughness. The J integral (both elastic and plastic) was used to quantify the fracture toughness. The plastic part of J integral value (Jpl) of corticellous specimen was 9310 J m−2, and shown to be 27 times of the J integral of the elastic part (Jel), 341 J m−2. The total J integral of the corticellous bone was found to be 9651 J m−2, which is close to two times of the cortical bone, 4731 J m−2. This study observed that J integral of corticellous bone is higher than the cortical bone since more energy is required for plastic deformation of corticellous bone due to crack branches and slowdown at the interface between cortical and cancellous bone.

References

References
1.
Behiri
,
J. C.
, and
Bonfield
,
W.
,
1989
, “
Orientation Dependence of the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
,
22
(
8–9
), pp.
863
867
.
2.
Bonfield
,
W.
,
1987
, “
Advances in the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
,
20
(
11–12
), pp.
1071
1081
.
3.
Cook
,
R. B.
, and
Zioupos
,
P.
,
2009
, “
The Fracture Toughness of Cancellous Bone
,”
J. Biomech.
,
42
(
13
), pp.
2054
2060
.
4.
Koester
,
K. J.
,
Ager
,
J. W. I.
, and
Ritchie
,
R. O.
,
2008
, “
The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks
,”
Nat. Mater.
,
7
(
8
), pp.
672
677
.
5.
Nalla
,
R. K.
,
Kruzic
,
J. J.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2004
, “
Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves
,”
Bone
,
35
(
6
), pp.
1240
1246
.
6.
Yan
,
J.
,
Mecholsky
,
J. J.
, and
Clifton
,
K. B.
,
2007
, “
How Tough Is Bone? Application of Elastic–Plastic Fracture Mechanics to Bone
,”
Bone
,
40
(
2
), pp.
479
484
.
7.
Zioupos
,
P.
, and
Currey
,
J. D.
,
1998
, “
Changes in the Stiffness, Strength, and Toughness of Human Cortical Bone With Age
,”
Bone
,
22
(
1
), pp.
57
66
.
8.
Ming-Yuan
,
H.
, and
Hutchinson
,
J. W.
,
1989
, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials
,”
Int. J. Solids Struct.
,
25
(
9
), pp.
1053
1067
.
9.
ASTM,
1997
, “
Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials
,” ASTM, West Conshohocken, PA, Standard No. E399-90.
10.
Lucksanasombool
,
P.
,
Higgs
,
W. A. J.
,
Higgs
,
R. J. E. D.
, and
Swain
,
M. V.
,
2001
, “
Fracture Toughness of Bovine Bone: Influence of Orientation and Storage Media
,”
Biomaterials
,
22
(
23
), pp.
3127
3132
.
11.
Zimmermann
,
E. A.
,
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2010
, “
The Significance of Crack-Resistance Curves to the Mixed-Mode Fracture Toughness of Human Cortical Bone
,”
Biomaterials
,
31
(
20
), pp.
5297
5305
.
12.
ASTM
,
2001
,
Standard Test Method for Measurement of Fracture Toughness
,
American Society for Testing Materials
,
West Conshohocken, PA
, Standard No. E1820-99A.
13.
Brown
,
W.
, and
Srawley
,
J.
,
1966
,
Plane Strain Crack Toughness Testing of High Strength Metallic Materials
,
ASTM International
,
West Conshohocken, PA
.
14.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
405
.
15.
Rho
,
J. Y.
,
Kuhn-Spearing
,
L.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
(
2
), pp.
92
102
.
16.
Vincent
,
J.
,
1990
,
Structural Biomaterials
,
Princeton University Press
,
Princeton, NJ
, p.
186
.
17.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
18.
Zioupos
,
P.
,
Currey
,
J. D.
,
Mirza
,
M. S.
, and
Barton
,
D. C.
,
1995
, “
Experimentally Determined Microcracking Around a Circular Hole in a Flat Plate of Bone: Comparison With Predicted Stresses
,”
Philos. Trans. R. Soc. London B
,
347
(
1322
), pp.
383
396
.
19.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2003
, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nat. Mater.
,
2
(
3
), pp.
164
168
.
20.
Östlund
,
S.
,
1995
, “
Fracture Modelling of Brittle‐Matrix Composites With Spatially Dependent Crack Bridging
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
10
), pp.
1213
1230
.
21.
Yan
,
J. H.
,
2005
, “
Elastic-Plastic Fracture Mechanics of Compact Bone
,” Ph.D. dissertation, University of Florida, Gainesville, FL.
22.
Feng
,
Z.
,
Rho
,
J.
,
Han
,
S.
, and
Ziv
,
I.
,
2000
, “
Orientation and Loading Condition Dependence of Fracture Toughness in Cortical Bone
,”
Mater. Sci. Eng.
,
11
(
1
), pp.
41
46
.
23.
Vashishth
,
D.
,
2005
, “
Age-Dependent Biomechanical Modifications in Bone
,”
Crit. Rev. Eukaryot. Gene Expr.
,
15
(
4
), pp.
343
358
.
24.
Felsenberg
,
D.
, and
Boonen
,
S.
,
2005
, “
The Bone Quality Framework: Determinants of Bone Strength and Their Interrelationships, and Implications for Osteoporosis Management
,”
Clin. Ther.
,
27
(
1
), pp.
1
11
.
25.
Bailey
,
A. J.
,
Paul
,
R. G.
, and
Knott
,
L.
,
1998
, “
Mechanisms of Maturation and Ageing of Collagen
,”
Mech. Ageing Dev.
,
106
(
1–2
), pp.
1
56
.
26.
Robins
,
S. P.
,
Duncan
,
A.
,
Wilson
,
N.
, and
Evans
,
B. J.
,
1996
, “
Standardization of Pyridinium Crosslinks, Pyridinoline and Deoxypyridinoline, for Use as Biochemical Markers of Collagen Degradation
,”
Clin. Chem.
,
42
(
10
), pp.
1621
1626
.http://clinchem.aaccjnls.org/content/clinchem/42/10/1621.full.pdf
27.
Knott
,
L.
, and
Bailey
,
A. J.
,
1998
, “
Collagen Cross-Links in Mineralizing Tissues: A Review of Their Chemistry, Function, and Clinical Relevance
,”
Bone
,
22
(
3
), pp.
181
187
.
28.
Vashishth
,
D.
,
Gibson
,
G. J.
,
Khoury
,
J. I.
,
Schaffler
,
M. B.
,
Kimura
,
J.
, and
Fyhrie
,
D. P.
,
2001
, “
Influence of Nonenzymatic Glycation on Biomechanical Properties of Cortical Bone
,”
Bone
,
28
(
2
), pp.
195
201
.
29.
Wang
,
X.
,
Shen
,
X.
,
Li
,
X.
, and
Agrawal
,
C. M.
,
2002
, “
Age-Related Changes in the Collagen Network and Toughness of Bone
,”
Bone
,
31
(
1
), pp.
1
7
.
30.
Karim
,
L.
,
Tang
,
S. Y.
,
Sroga
,
G. E.
, and
Vashishth
,
D.
,
2013
, “
Differences in Non-Enzymatic Glycation and Collagen Cross-Links Between Human Cortical and Cancellous Bone
,”
Osteoporos. Int.
,
24
(
9
), pp.
2441
2447
.
You do not currently have access to this content.