The objective of this study was to use image-based computational fluid dynamics (CFD) techniques to analyze the impact that multiple closely spaced intracranial aneurysm (IAs) of the supra-clinoid segment of the internal carotid artery (ICA) have on each other's hemodynamic characteristics. The vascular geometry of fifteen (15) subjects with 2 IAs was gathered using a 3D digital subtraction angiography clinical system. Two groups of computer models were created for each subject's vascular geometry: both IAs present (model A) and after removal of one IA (model B). Models were separated into two groups based on IA separation: tandem (one proximal and one distal) and adjacent (aneurysms directly opposite on a vessel). Simulations using a pulsatile velocity waveform were solved by a commercial CFD solver. Proximal IAs altered flow into distal IAs (5 of 7), increasing flow energy and spatial-temporally averaged wall shear stress (STA-WSS: 3–50% comparing models A to B) while decreasing flow stability within distal IAs. Thus, proximal IAs may “protect” a distal aneurysm from destructive remodeling due to flow stagnation. Among adjacent IAs, the presence of both IAs decreased each other's flow characteristics, lowering WSS (models A to B) and increasing flow stability: all changes statistically significant (p < 0.05). A negative relationship exists between the mean percent change in flow stability in relation to adjacent IA volume and ostium area. Closely spaced IAs impact hemodynamic alterations onto each other concerning flow energy, stressors, and stability. Understanding these alterations (especially after surgical repair of one IA) may help uncover risk factor(s) pertaining to the growth of (remaining) IAs.

References

References
1.
Rinne
,
J.
,
Hernesniemi
,
J.
,
Puranen
,
M.
, and
Saari
,
T.
,
1994
, “
Multiple Intracranial Aneurysms in a Defined Population: Prospective Angiographic and Clinical Study
,”
Neurosurgery
,
35
(
5
), pp.
803
808
.
2.
Vlak
,
M. H.
,
Algra
,
A.
,
Brandenburg
,
R.
, and
Rinkel
,
G. J.
,
2011
, “
Prevalence of Unruptured Intracranial Aneurysms, With Emphasis on Sex, Age, Comorbidity, Country, and Time Period: A Systematic Review and Meta-Analysis
,”
Lancet Neurol.
,
10
(
7
), pp.
626
636
.
3.
Ellamushi
,
H. E.
,
Grieve
,
J. P.
,
Jäger
,
H. R.
, and
Kitchen
,
N. D.
,
2001
, “
Risk Factors for the Formation of Multiple Intracranial Aneurysms
,”
J. Neurosurg.
,
94
(
5
), pp.
728
732
.
4.
Ferns
,
S. P.
,
Sprengers
,
M. E.
,
van Rooij
,
W. J. J.
,
van den Berg
,
R.
,
Velthuis
,
B. K.
,
de Kort
,
G. A.
,
Sluzewski
,
M.
,
van Zwam
,
W. H.
,
Rinkel
,
G. J.
, and
Majoie
,
C. B.
,
2011
, “
De Novo Aneurysm Formation and Growth of Untreated Aneurysms
,”
Stroke
,
42
(
2
), pp.
313
318
.
5.
Jain
,
K. K.
,
1963
, “
Mechanism of Rupture of Intracranial Saccular Aneurysms
,”
Surgery
,
54
(
2
), pp.
347
350
.
6.
Crompton
,
M. R.
,
1966
, “
Mechanism of Growth and Rupture in Cerebral Berry Aneurysms
,”
Br. Med. J.
,
1
(
5496
), pp.
1138
1142
.
7.
Jou
,
L.
, and
Britz
,
G.
,
2016
, “
Correlation Between Aneurysm Size and Hemodynamics in One Individual With Multiple Small Intracranial Aneurysms
,”
Cureus
,
8
(
7
), p.
e683
.
8.
Cebral
,
J.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
Am. J. Neuroradiol.
,
32
(
2
), pp.
264
270
.
9.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic–Morphologic Discriminants for Intracranial Aneurysm Rupture
,”
Stroke
,
42
(
1
), pp.
144
152
.
10.
Byrne
,
G.
,
Mut
,
F.
, and
Cebral
,
J.
,
2014
, “
Quantifying the Large-Scale Hemodynamics of Intracranial Aneurysms
,”
Am. J. Neuroradiol.
,
35
(
2
), pp.
333
338
.
11.
Sunderland
,
K.
,
Haferman
,
C.
,
Chintalapani
,
G.
, and
Jiang
,
J.
,
2016
, “
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms
,”
Comput. Math. Methods Med.
,
2016
, p.
1
.
12.
Ford
,
M.
,
Hoi
,
Y.
,
Piccinelli
,
M.
,
Antiga
,
L.
, and
Steinman
,
D.
,
2014
, “
An Objective Approach to Digital Removal of Saccular Aneurysms: Technique and Applications
,”
Br. J. Radiol.
,
82
(
1
), pp.
S55
S61
.
13.
Gwilliam
,
M. N.
,
Hoggard
,
N.
,
Capener
,
D.
,
Singh
,
P.
,
Marzo
,
A.
,
Verma
,
P. K.
, and
Wilkinson
,
I. D.
,
2009
, “
MR Derived Volumetric Flow Rate Waveforms at Locations Within the Common Carotid, Internal Carotid, and Basilar Arteries
,”
J. Cereb. Blood Flow Metab.
,
29
(
12
), pp.
1975
1982
.
14.
Miura
,
Y.
,
Ishida
,
F.
,
Umeda
,
Y.
,
Tanemura
,
H.
,
Suzuki
,
H.
,
Matsushima
,
S.
,
Shimosaka
,
S.
, and
Taki
,
W.
,
2013
, “
Low Wall Shear Stress Is Independently Associated With the Rupture Status of Middle Cerebral Artery Aneurysms
,”
Stroke
,
44
(
2
), pp.
519
521
.
15.
Zhou
,
G.
,
Zhu
,
Y.
,
Yin
,
Y.
,
Su
,
M.
, and
Li
,
M.
,
2017
, “
Association of Wall Shear Stress With Intracranial Aneurysm Rupture: Systematic Review and Meta-Analysis
,”
Sci. Rep.
,
7
(
1
), p.
5331
.
16.
Augst
,
A. D.
,
Ariff
,
B.
,
McG. Thom
,
S. A. G.
,
Xu
,
X. Y.
, and
Hughes
,
A. D.
,
2007
, “
Analysis of Complex Flow and the Relationship Between Blood Pressure, Wall Shear Stress, and Intima-Media Thickness in the Human Carotid Artery
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
293
(
2
), pp.
H1031
H1037
.
17.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
91
107
.
18.
Kadasi
,
L. M.
,
Dent
,
W. C.
, and
Malek
,
A. M.
,
2013
, “
Colocalization of Thin-Walled Dome Regions With Low Hemodynamic Wall Shear Stress in Unruptured Cerebral Aneurysms
,”
J. Neurosurg.
,
119
(
1
), pp.
172
179
.
19.
Xiang
,
J.
,
Tutino
,
V.
,
Snyder
,
K.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.
20.
Meng
,
H.
,
Tutino
,
V.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.
21.
Rayz
,
V.
,
Boussel
,
L.
,
Lawton
,
M.
,
Acevedo-Bolton
,
G.
,
Ge
,
L.
,
Young
,
W.
,
Higashida
,
R.
, and
Saloner
,
D.
,
2008
, “
Numerical Modeling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation
,”
Ann. Biomed. Eng.
,
36
(
11
), p.
1793
.
22.
Boussel
,
L.
,
Rayz
,
V.
,
McCulloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress
,”
Stroke
,
39
(
11
), pp.
2997
3002
.
23.
Ujiie
,
H.
,
Tamano
,
Y.
,
Sasaki
,
K.
, and
Hori
,
T.
,
2001
, “
Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm?
,”
Neurosurgery
,
48
(
3
), pp.
495
503
.
24.
Aoki
,
T.
,
Yamamoto
,
K.
,
Fukuda
,
M.
,
Shimogonya
,
Y.
,
Fukuda
,
S.
, and
Narumiya
,
S.
,
2016
, “
Sustained Expression of MCP-1 by Low Wall Shear Stress Loading Concomitant With Turbulent Flow on Endothelial Cells of Intracranial Aneurysm
,”
Acta Neuropathol. Commun.
,
4
(
1
), p.
48
.
25.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm
,”
Stroke
,
35
(
11
), pp.
2500
2505
.
26.
Ford
,
M. D.
,
Lee
,
S.-W.
,
Lownie
,
S. P.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
On the Effect of Parent–Aneurysm Angle on Flow Patterns in Basilar Tip Aneurysms: Towards a Surrogate Geometric Marker of Intra-Aneurismal Hemodynamics
,”
J. Biomech.
,
41
(
2
), pp.
241
248
.
27.
Jou
,
L.-D.
,
Lee
,
D.
,
Morsi
,
H.
, and
Mawad
,
M.
,
2008
, “
Wall Shear Stress on Ruptured and Unruptured Intracranial Aneurysms at the Internal Carotid Artery
,”
Am. J. Neuroradiol.
,
29
(
9
), pp.
1761
1767
.
28.
Zhang
,
Y.
,
Tian
,
Z.
,
Jing
,
L.
,
Zhang
,
Y.
,
Liu
,
J.
, and
Yang
,
X.
,
2016
, “
Bifurcation Type and Larger Low Shear Area Are Associated With Rupture Status of Very Small Intracranial Aneurysms
,”
Front. Neurol.
,
7
, p.
169
.
29.
Doddasomayajula
,
R.
,
Chung
,
B.
,
Mut
,
F.
,
Jimenez
,
C.
,
Hamzei-Sichani
,
F.
,
Putman
,
C.
, and
Cebral
,
J.
,
2017
, “
Hemodynamic Characteristics of Ruptured and Unruptured Multiple Aneurysms at Mirror and Ipsilateral Locations
,”
Am. J. Neuroradiol.
,
38
(
12
), pp.
2301
2307
.
30.
Fung
,
J. C. H.
,
2000
, “
Residence Time of Inertial Particles in a Vortex
,”
J. Geophys. Res.: Oceans
,
105
(
C6
), pp.
14261
14272
.
31.
Gambaruto
,
A.
, and
João
,
A.
,
2012
, “
Flow Structures in Cerebral Aneurysms
,”
Comput. Fluids
,
65
(
Suppl. C
), pp.
56
65
.
32.
Einav
,
S.
, and
Bluestein
,
D.
,
2004
, “
Dynamics of Blood Flow and Platelet Transport in Pathological Vessels
,”
Ann. N. Y. Acad. Sci.
,
1015
(
1
), pp.
351
366
.
33.
Shadden
,
S. C.
, and
Arzani
,
A.
,
2015
, “
Lagrangian Postprocessing of Computational Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
41
58
.
34.
Kim
,
M.-C.
,
Nam
,
J. H.
, and
Lee
,
C.-S.
,
2006
, “
Near-Wall Deposition Probability of Blood Elements as a New Hemodynamic Wall Parameter
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
958
970
.
35.
Nakazaki
,
M.
,
Nonaka
,
T.
,
Nomura
,
T.
,
Onda
,
T.
,
Yonemasu
,
Y.
,
Takahashi
,
A.
,
Hashimoto
,
Y.
,
Honda
,
O.
,
Oka
,
S.
,
Sasaki
,
M.
,
Daibo
,
M.
, and
Honmou
,
O.
,
2017
, “
Cerebral Aneurysm Neck Diameter Is an Independent Predictor of Progressive Occlusion After Stent-Assisted Coiling
,”
Acta Neurochir.
,
159
(
7
), pp.
1313
1319
.
36.
Lee
,
G.-J.
,
Eom
,
K.-S.
,
Lee
,
C.
,
Kim
,
D.-W.
, and
Kang
,
S.-D.
,
2015
, “
Rupture of Very Small Intracranial Aneurysms: Incidence and Clinical Characteristics
,”
J. Cerebrovasc. Endovasclar Neurosurg.
,
17
(
3
), pp.
217
222
.
37.
Antiga
,
L.
, and
Steinman
,
D. A.
,
2004
, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
,
23
(
6
), pp.
704
713
.
38.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
39.
Sujudi
,
D.
, and
Haimes
,
R.
,
1995
, “
Identification of Swirling Flow in 3D Vector Fields
,”
AIAA
Paper No. 95-1715.
40.
Shannon
,
C. E.
,
2001
, “
A Mathematical Theory of Communication
,”
ACM SIGMOBILE Mobile Comput. Commun. Rev.
,
5
(
1
), pp.
3
55
.
41.
Xu
,
L.
,
Lee
,
T.-Y.
, and
Shen
,
H.-W.
,
2010
, “
An Information-Theoretic Framework for Flow Visualization
,”
IEEE Trans. Visualization Comput. Graph.
,
16
(
6
), pp.
1216
1224
.
42.
Ma
,
J.
,
Wang
,
C.
,
Shene
,
C.-K.
, and
Jiang
,
J.
,
2014
, “
A Graph-Based Interface for Visual analytics of 3D Streamlines and Path lines
,”
IEEE Trans. Visualization Comput. Graphics
,
20
(
8
), pp.
1127
1140
.
43.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
ACM Siggraph Computer Graphics
,
New York
, pp.
163
169
.
You do not currently have access to this content.