Numerical models of the human middle ear have been developed throughout the last 30 years, for different purposes. While several types of pathologies have been studied, stapedial disorders were seldomly explored. This papers aims to clarify how stapes fracture and some forms of stapes ankylosis, such as stapedial tendon (ST) ossification, augmented pyramidal eminence (PE) and bony bar presence, affect the sound transmission through the middle ear. In addition, the stapes dynamics is also analyzed by means of total displacement and first principal strain. For the purpose of the study, first, a three-dimensional finite element model of the human middle ear is detailed and validated under normal (healthy) conditions. The model is then modified to represent the stapedial disorders of interest. A measure is established for evaluating how the disorders reduce sound transmission through the middle ear. Results of the reduction of sound transmission showed that the different forms of stapes ankylosis affect primarily low frequencies, while the stapes fracture mostly affects high frequency sound transmission. According to the results, an augmented PE does not restrict stapes movement unless followed by some ossification of the ST. In addition, the question whether the fracture is in the anterior or posterior crus and the distance of the fractured part from the stapes footplate have a relevant role in the reduction of the sound transmission. Finally, the analysis of total displacement and first principal strain of the stapes helped to highlight some differences among the stapedial disorders.

References

References
1.
Moore
,
B.
,
2012
,
An Introduction to the Psychology of Hearing
,
Emerald
, Bingley, UK.
2.
Puria
,
S.
,
Fay
,
R.
, and
Popper
,
A.
,
2013
,
The Middle Ear: Science, Otosurgery, and Technology
(Springer Handbook of Auditory Research),
Springer
,
New York
.
3.
von Békésy
,
G.
,
1960
,
Experiments in Hearing
,
McGraw-Hill
, New York.
4.
Gottlieb
,
P. K.
,
Vaisbuch
,
Y.
, and
Puria
,
S.
,
2018
, “
Human Ossicular-Joint Flexibility Transforms the Peak Amplitude and Width of Impulsive Acoustic Stimuli
,”
J. Acoust. Soc. Am.
,
143
(
6
), pp.
3418
3433
.
5.
Mason
,
M. J.
,
2013
, “
Of Mice, Moles and Guinea Pigs: Functional Morphology of the Middle Ear in Living Mammals
,”
Hear. Res.
,
301
, pp.
4
18
.
6.
WHO
,
2017
,
World Health Organization: Global Costs of Unaddressed Hearing Loss and Cost-Effectiveness of Interventions
,
World Health Organization
,
Geneva, Switzerland
.
7.
Luers
,
J. C.
, and
Huttenbrink
,
K.
,
2016
, “
Surgical Anatomy and Pathology of the Middle Ear
,”
J. Anat.
,
228
(
2
), pp.
338
353
.
8.
Calero
,
D.
,
Paul
,
S.
,
Gesing
,
A.
,
Alves
,
F.
, and
Cordioli
,
J. A.
, “
A Technical Review and Evaluation of Implantable Sensors for Hearing Devices
,”
J. Orthop. Res.
,
1
(
3
), pp.
257
265
.
9.
Paolis
,
A. D.
,
Bikson
,
M.
,
Nelson
,
J. T.
,
de Ru
,
J. A.
,
Packer
,
M.
, and
Cardoso
,
L.
,
2017
, “
Analytical and Numerical Modeling of the Hearing System: Advances Towards the Assessment of Hearing Damage
,”
Hear. Res.
,
349
, pp.
111
128
.
10.
Puria
,
S.
,
2018
, “
The Growing Potential of Finite Element Modeling as an Investigative Tool in Middle-Ear Mechanics
,”
Eighth International Symposium on Middle Ear Mechanics in Research and Otology
(
MEMRO
), Shangai, China, July 5–9, pp. 20–21.https://www.mdlinx.com/otolaryngology/conferences/8th-international-symposium-on-middle-ear-mechanics-in-research-and-otology-memro2018-/254703/
11.
Sun
,
Q.
,
Gan
,
R. Z.
,
Chang
,
K.-H.
, and
Dormer
,
K. J.
,
2002
, “
Computer-Integrated Finite Element Modeling of Human Middle Ear
,”
Biomech. Model. Mechanobiol.
,
1
(
2
), pp.
109
122
.
12.
Gan
,
R. Z.
,
Sun
,
Q.
,
Feng
,
B.
, and
Wood
,
M.
,
2005
, “
Acoustic-Structural Coupled Finite Element Analysis for Sound Transmission in Human Ear-Pressure Distributions
,”
Med. Eng. Phys.
, (
28
), pp.
395
404
.
13.
Homma
,
K.
,
Du
,
Y.
,
Shimizu
,
Y.
, and
Puria
,
S.
,
2009
, “
Ossicular Resonance Modes of the Human Middle Ear for Bone and Air Conduction
,”
J. Acoust. Soc. Am.
,
125
(
2
), pp.
968
979
.
14.
Greef
,
D. D.
,
Pires
,
F.
, and
Dirckx
,
J. J.
,
2017
, “
Effects of Model Definitions and Parameter Values in Finite Element Modeling of Human Middle Ear Mechanics
,”
Hear. Res.
,
344
, pp.
195
206
.
15.
Gan
,
R. Z.
, and
Wang
,
X.
,
2007
, “
Multifield Coupled Finite Element Analysis for Sound Transmission in Otitis Media With Effusion
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3527
3538
.
16.
Gentil
,
F.
,
Parente
,
M.
,
MArtins
,
P.
,
Santos
,
C.
,
Ameida
,
E.
,
Ferreira
,
O.
, and
Natal
,
R.
,
2015
, “
Numerical Study of Hough Technique in Surgery of Otosclerosis, Using the Finite Element Method
,”
Acta Bioeng. Biomech.
,
17
(
4
), pp.
149
153
.https://www.ncbi.nlm.nih.gov/pubmed/26899201
17.
Yang
,
S.
,
Xu
,
D.
, and
Liu
,
X.
,
2016
, “
Evaluation of Round Window Stimulation Performance in Otosclerosis Using Finite Element Modeling
,”
Comput. Math. Methods Med.
, epub.
18.
Gesing
,
A. L.
,
Alves
,
F. D. P.
,
Paul
,
S.
, and
Cordioli
,
J. A.
,
2018
, “
On the Design of a Mems Piezoelectric Accelerometer Coupled to the Middle Ear as an Implantable Sensor for Hearing Devices
,”
Sci. Rep.
,
8
(1).https://www.nature.com/articles/s41598-018-22219-7
19.
Lee
,
C.
,
Chen
,
J.
,
Chou
,
Y.
,
Hsu
,
L.
,
Chen
,
P.
, and
Liu
,
T.
,
2007
, “
Optimal Graft Thickness for Different Sizes of Tympanic Membrane Perforation in Cartilage Myringoplasty: A Finite Element Analysis
,”
Laryngoscope
,
117
(
4
), pp.
725
730
.
20.
Gan
,
R. Z.
,
Cheng
,
T.
,
Dai
,
C.
,
Yang
,
F.
, and
Wood
,
M. W.
,
2009
, “
Finite Element Modeling of Sound Transmission With Perforations of Tympanic Membrane
,”
J. Acoust. Soc. Am.
,
126
(
1
), pp.
243
253
.
21.
Elbrond
,
O.
, and
Aastrup
,
J. E.
,
1973
, “
Isolated Fractures of the Stapedial Arch
,”
Acta Otolaryng.
,
75
(
4
), pp.
357
358
.
22.
Singh
,
S.
,
Salib
,
R. J.
, and
Oates
,
J.
,
2002
, “
Traumatic Fracture of the Stapes Suprastructure Following Minor Head Injury
,”
J. Laryngol. Otol.
,
116
(6), pp.
457
459
.
23.
Yetiser
,
S.
,
Hídír
,
Y.
,
Birkent
,
H.
,
Satar
,
B.
, and
Durmaz
,
A.
,
2008
, “
Traumatic Ossicular Dislocations: Etiology and Management
,”
Am. J. Otolaryngol.
,
29
(
1
), pp.
31
36
.
24.
Ederies
,
A.
,
Yuen
,
H.-W.
,
Chen
,
J. M.
,
Aviv
,
R. I.
, and
Symons
,
S. P.
,
2009
, “
Traumatic Stapes Fracture With Rotation and Subluxation Into the Vestibule and Pneumolabyrinth
,”
Laryngoscope
,
119
(
6
), pp.
1195
1197
.
25.
Hong
,
S. M.
,
Lee
,
J. H.
,
Park
,
C. H.
, and
Kim
,
H.-J.
,
2014
, “
Transverse Fracture of the Stapes Anterior Crus Caused by the Blast Pressure From a Land Mine Explosion
,”
Korean J. Audiol.
,
18
(
3
), pp.
137
140
.
26.
Jang
,
C. H.
,
Yang
,
H. C.
,
Um
,
T. H.
, and
Cho
,
Y. B.
,
2014
, “
Stapes Crural Fracture Without Perilymph Fistula by q-Tip Injury
,”
The J. Int. Adv. Otol.
,
10
(
1
), pp.
100
101
.https://pdfs.semanticscholar.org/e7c9/475f3a41ac0644c10451108b74a340843945.pdf
27.
Aussedat
,
C.
,
Bobiller
,
C.
,
Gaillot
,
K.
,
Lescanne
,
E.
, and
Bakhos
,
D.
,
2017
, “
Tympanometry and Isolated Fracture of the Stapes
,”
Eur. Ann. Otorhinolaryngol., Head Neck Dis.
,
134
(
4
), pp.
277
279
.
28.
H.F
,
S.
, and
S
,
T.
,
1957
, “
Some Interesting Middle Ear Problems
,”
Laryngoscope
,
67
, pp.
395
409
.
29.
Cremers
,
C. W. R. J.
, and
Hoogland
,
G. A.
,
1986
, “
Congenital Stapes Ankylosis by Elongation of the Pyramidal Eminence Communication
,”
Ann. Otol., Rhinol. Laryngol.
,
95
(
2
), pp.
167
168
.
30.
Grant
,
W. E.
, and
Grant
,
W. J.
,
1991
, “
Stapedius Tendon Ossification: A Rare Cause of Congenital Conductive Hearing Loss
,”
J. Laryngol. Otol.
,
105
(
9
), pp.
763
764
.
31.
Jecker
,
P.
, and
Hartwein
,
J.
,
1992
, “
Die Verknocherung Der Stapediussehne Als Seltene Ursache Einer Schalleitungsschwerhorigkeit
,”
Laryngo.-Rhino.-Otol.
,
71
(
7
), pp.
344
346
.
32.
Kinsella
,
J. B.
, and
Kerr
,
A. G.
,
1993
, “
Familial Stapes Superstructure Fixation
,”
J. Laryngol. Otol.
,
107
(
1
), pp.
36
38
.
33.
Thies
,
C.
,
Handrock
,
M.
,
Sperling
,
K.
, and
Rcis
,
A.
,
1996
, “
Possible Autosomal Recessive Inheritance of Progressive Hearing Loss With Stapes Fixation
,”
J. Med. Genet.
,
33
(
7
), pp.
597
599
.
34.
Hara
,
A.
,
Ase
,
Y.
,
Kusakari
,
J.
, and
Kurosaki
,
Y.
,
1997
, “
Dominant Hereditary Conductive Hearing Loss Due to an Ossified Stapedius Tendon
,”
Arch. Otolaryngol. Head Neck Surg.
,
123
(
10
), pp.
1133
1135
.
35.
Ulku
,
C. H.
,
2011
, “
Izole Stapedial Tendon Ossifikasyonu: Olgu Sunumu
,”
Kulak Burun Bogaz Ihtis Derg
,
21
(2), pp.
95
97
.
36.
Wasano
,
K.
,
Kanzaki
,
S.
, and
Ogawa
,
K.
,
2014
, “
Bilateral Congenital Conductive Hearing Loss Due to Ossification of the Stapedius Tendon
,”
Otol. Neurotol.
,
35
(3), pp.
e119
e120
.
37.
dos Santos
,
V. F.
,
Soalheiro
,
M.
, and
Nabuco
,
M.
,
2014
, “
Estimation of Measurement Uncertainty for Air Conduction Audiometry Testing by Iso 8253-1: 2010
,”
Int. Arch. Otorhinolaryngol.
,
18
(
S 01
), p.
a2507
.
38.
Liberman
,
M.
,
Liberman
,
L.
, and
Maison
,
S.
,
2015
, “
Chronic Conductive Hearing Loss Leads to Cochlear Degeneration
,”
PLoS One
,
10
(
11
), e0142341.
39.
Ihlefeld
,
A.
,
Chen
,
Y.
, and
Sanes
,
D.
,
2016
, “
Developmental Conductive Hearing Loss Reduces Modulation Masking Release
,”
Trends Hear.
,
20
, pp.
1
4
.
40.
COMSOL
, “
Structural Mechanics Module. User's Guide for Comsol Multiphysics 5.2
”.
41.
Nakajima
,
H. H.
,
Dong
,
W.
,
Olson
,
E. S.
,
Merchant
,
S. N.
,
Ravicz
,
M. E.
, and
Rosowski
,
J. J.
,
2009
, “
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
,”
J. Assoc. Res. Otolaryngol.
,
10
(
1
), p.
23
.
42.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2014
, “
Dynamic Properties of Human Stapedial Annular Ligament Measured With Frequency-Temperature Superposition
,”
ASME J. Biomech. Eng.
,
136
(8), p.
081004
.
43.
Aibara
,
R.
,
Welsh
,
J. T.
,
Puria
,
S.
, and
Goode
,
R. L.
,
2001
, “
Human Middle-Ear Sound Transfer Function and Cochlear Input Impedance
,”
Hear. Res.
,
152
(
1–2
), pp.
100
109
.
44.
Cheng
,
J. T.
,
Hamade
,
M.
,
Merchant
,
S. N.
,
Rosowski
,
J. J.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2013
, “
Wave Motion on the Surface of the Human Tympanic Membrane: Holographic Measurement and Modeling Analysis
,”
J. Acoust. Soc. Am.
,
133
(
2
), pp.
918
937
.
45.
Cheng
,
T.
, and
Gan
,
R. Z.
,
2007
, “
Mechanical Properties of Stapedial Tendon in Human Middle Ear
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
913
918
.
46.
Sadd
,
M. H.
,
2005
,
Elasticity: Theory, Applications, and Numerics
,
Elsevier
, Burlington, NJ.
You do not currently have access to this content.