Intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms (AAA) of a size warranting consideration for surgical or endovascular intervention. The rupture risk of AAAs is thought to be related to the balance of vessel wall strength and the mechanical stress caused by systemic blood pressure. Previous finite element analyses of AAAs have shown that ILT can reduce and homogenize aneurysm wall stress. These works have largely considered ILT to be homogeneous in mechanical character or have idealized a stiffness distribution through the thrombus thickness. In this work, we use magnetic resonance imaging (MRI) to delineate the heterogeneous composition of ILT in 7 AAAs and perform patient–specific finite element analysis under multiple conditions of ILT layer stiffness disparity. We find that explicit incorporation of ILT heterogeneity in the finite element analysis is unlikely to substantially alter major stress analysis predictions regarding aneurysm rupture risk in comparison to models assuming a homogenous thrombus, provided that the maximal ILT stiffness is the same between models. Our results also show that under a homogeneous ILT assumption, the choice of ILT stiffness from values common in the literature can result in significantly larger variations in stress predictions compared to the effects of thrombus heterogeneity.

References

References
1.
Ashton
,
H. A.
,
Buxton
,
M. J.
,
Day
,
N. E.
,
Kim
,
L. G.
,
Marteau
,
T. M.
,
Scott
,
R. A.
,
Thompson
,
S. G.
,
Walker
,
N. M.
, and
Multicentre Aneurysm Screening Study
,
G.
,
2002
, “
The Multicentre Aneurysm Screening Study (MASS) Into the Effect of Abdominal Aortic Aneurysm Screening on Mortality in Men: A Randomised Controlled Trial
,”
Lancet
,
360
(9345), pp.
1531
1539
.
2.
Assar
,
A. N.
, and
Zarins
,
C. K.
,
2009
, “
Ruptured Abdominal Aortic Aneurysm: A Surgical Emergency With Many Clinical Presentations
,”
Postgrad. Med. J.
,
85
(
1003
), pp.
268
273
.
3.
Nicholls
,
S. C.
,
Gardner
,
J. B.
,
Meissner
,
M. H.
, and
Johansen
,
K. H.
,
1998
, “
Rupture in Small Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
28
(
5
), pp.
884
888
.
4.
Canchi
,
T.
,
Kumar
,
S. D.
,
Ng
,
E. Y. K.
, and
Narayanan
,
S.
,
2015
, “
A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms
,”
Biomed. Res. Int.
,
2015
, p.
861627
.
5.
Chakfe
,
N.
,
Heim
,
F.
, and
Georg
,
Y.
,
2015
, “
Commentary on ‘Finite Element Analysis in Asymptomatic, Symptomatic, and Ruptured Abdominal Aortic Aneurysms—in Search of New Rupture Risk Predictors’
,”
Eur. J. Vasc. Endovascular Surg.
,
49
(
3
), pp.
246
247
.
6.
Erhart
,
P.
,
Hyhlik-Dürr
,
A.
,
Geisbüsch
,
P.
,
Kotelis
,
D.
,
Müller-Eschner
,
M.
,
Gasser
,
T. C.
,
von Tengg-Kobligk
,
H.
, and
Böckler
,
D.
,
2015
, “
Finite Element Analysis in Asymptomatic, Symptomatic, and Ruptured Abdominal Aortic Aneurysms: In Search of New Rupture Risk Predictors
,”
Eur. J. Vasc. Endovascular Surg.
,
49
(
3
), pp.
239
45
.
7.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.
8.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovascular Surg.
,
40
(
2
), pp.
176
185
.
9.
Chandra
,
S.
,
Raut
,
S. S.
,
Jana
,
A.
,
Biederman
,
R. W.
,
Doyle
,
M.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081001
.
10.
Chandra
,
S.
,
Gnanaruban
,
V.
,
Riveros
,
F.
,
Rodriguez
,
J. F.
, and
Finol
,
E. A.
,
2016
, “
A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
101005
.
11.
Reeps
,
C.
,
Gee
,
M.
,
Maier
,
A.
,
Gurdan
,
M.
,
Eckstein
,
H.-H.
, and
Wall
,
W. A.
,
2010
, “
The Impact of Model Assumptions on Results of Computational Mechanics in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
51
(
3
), pp.
679
688
.
12.
Riveros
,
F.
,
Chandra
,
S.
,
Finol
,
E. A.
,
Gasser
,
T. C.
, and
Rodriguez
,
J. F.
,
2013
, “
A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
41
(
4
), pp.
694
708
.
13.
Xenos
,
M.
,
Labropoulos
,
N.
,
Rambhia
,
S.
,
Alemu
,
Y.
,
Einav
,
S.
,
Tassiopoulos
,
A.
,
Sakalihasan
,
N.
, and
Bluestein
,
D.
,
2015
, “
Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid-Structure Interaction Method
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
139
153
.
14.
Di Achille
,
P.
,
Tellides
,
G.
,
Figueroa
,
C. A.
, and
Humphrey
,
J. D.
,
2014
, “
A Haemodynamic Predictor of Intraluminal Thrombus Formation in Abdominal Aortic Aneurysms
,”
Proc. R. Soc. A
,
470
(2172), p. 20140163.
15.
Shin
,
I.-S.
,
Kim
,
J.-M.
,
Kim
,
K. L.
,
Jang
,
S. Y.
,
Jeon
,
E.-S.
,
Choi
,
S. H.
,
Kim
,
D.-K.
,
Suh
,
W.
, and
Kim
,
Y.-W.
,
2009
, “
Early Growth Response Factor-1 Is Associated With Intraluminal Thrombus Formation in Human Abdominal Aortic Aneurysm
,”
J. Am. Coll. Cardiol.
,
53
(
9
), pp.
792
799
.
16.
Wilson
,
J. S.
,
Virag
,
L.
,
Di Achille
,
P.
,
Karšaj
,
I.
, and
Humphrey
,
J. D.
,
2013
, “
Biochemomechanics of Intraluminal Thrombus in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021011
.
17.
Castrucci
,
M.
,
Mellone
,
R.
,
Vanzulli
,
A.
,
De Gaspari
,
A.
,
Castellano
,
R.
,
Astore
,
D.
,
Chiesa
,
R.
,
Grossi
,
A.
, and
Del Maschio
,
A.
,
1995
, “
Mural Thrombi in Abdominal Aortic Aneurysms: MR Imaging Characterization–Useful Before Endovascular Treatment?
,”
Radiology
,
197
(
1
), pp.
135
139
.
18.
de la Motte
,
L.
,
Pedersen
,
M. M.
,
Thomsen
,
C.
,
Vogt
,
K.
,
Schroeder
,
T. V.
, and
Lonn
,
L.
,
2013
, “
Categorization of Aortic Aneurysm Thrombus Morphology by Magnetic Resonance Imaging
,”
Eur. J. Radiol.
,
82
(
10
), pp.
e544
e549
.
19.
Schurink
,
G. W. H.
,
Baalen
,
J. M. V.
,
Visser
,
M. J. T.
, and
Bockel
,
J. H. V.
,
2000
, “
Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
,
31
(
3
), pp.
501
506
.
20.
Thubrikar
,
M. J.
,
Robicsek
,
F.
,
Labrosse
,
M.
,
Chervenkoff
,
V.
, and
Fowler
,
B. L.
,
2003
, “
Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilation and Stress
,”
J. Cardiovasc. Surg. (Torino)
,
44
(
1
), pp.
67
77
.https://www.minervamedica.it/en/journals/cardiovascular-surgery/article.php?cod=R37Y2003N01A0067&acquista=1
21.
Vorp
,
D. A.
,
Lee
,
P. C.
,
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Nemoto
,
E. M.
,
Ogawa
,
S.
, and
Webster
,
M. W.
,
2001
, “
Association of Intraluminal Thrombus in Abdominal Aortic Aneurysm With Local Hypoxia and Wall Weakening
,”
J. Vasc. Surg.
,
34
(
2
), pp.
291
299
.
22.
Wang
,
D. H. J.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(
3
), pp.
598
604
.
23.
Meyer
,
C. A.
,
Guivier-Curien
,
C.
, and
Moore
,
J. E.
,
2010
, “
Trans-Thrombus Blood Pressure Effects in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
071005
.
24.
Riveros
,
F.
,
Martufi
,
G.
,
Gasser
,
T. C.
, and
Rodriguez-Matas
,
J. F.
,
2015
, “
On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2253
2264
.
25.
Labruto
,
F.
,
Blomqvist
,
L.
, and
Swedenborg
,
J.
,
2011
, “
Imaging the Intraluminal Thrombus of Abdominal Aortic Aneurysms: Techniques, Findings, and Clinical Implications
,”
J. Vasc. Interventional Radiol.
,
22
(
8
), pp.
1069
1075
.
26.
Zhu
,
C.
,
Tian
,
B.
,
Leach
,
J. R.
,
Liu
,
Q.
,
Lu
,
J.
,
Chen
,
L.
,
Saloner
,
D.
, and
Hope
,
M. D.
,
2017
, “
Non-Contrast 3D Black Blood MRI for Abdominal Aortic Aneurysm Surveillance: Comparison With CT Angiography
,”
Eur. Radiol.
,
27
(
5
), pp.
1787
1794
.
27.
Cornelissen
,
S. A.
,
Laan
,
M. J. V D.
,
Vincken
,
K. L.
,
Vonken
,
E.-J. P.
,
Viergever
,
M. A.
,
Bakker
,
C. J.
,
Moll
,
F. L.
, and
Bartels
,
L. W.
,
2011
, “
Use of Multispectral MRI to Monitor Aneurysm Sac Contents After Endovascular Abdominal Aortic Aneurysm Repair
,”
J. Endovascular Ther.
,
18
(
3
), pp.
274
279
.
28.
Nguyen
,
V. L.
,
Leiner
,
T.
,
Hellenthal
,
F. A.
,
Backes
,
W. H.
,
Wishaupt
,
M. C.
,
van der Geest
,
R. J.
,
Heeneman
,
S.
,
Kooi
,
M. E.
, and
Schurink
,
G. W.
,
2014
, “
Abdominal Aortic Aneurysms With High Thrombus Signal Intensity on Magnetic Resonance Imaging are Associated With High Growth Rate
,”
Eur. J. Vasc. Endovascular Surg.
,
48
(
6
), pp.
676
684
.
29.
Zhu
,
C.
,
Haraldsson
,
H.
,
Faraji
,
F.
,
Owens
,
C.
,
Gasper
,
W.
,
Ahn
,
S.
,
Liu
,
J.
,
Laub
,
G.
,
Hope
,
M. D.
, and
Saloner
,
D.
,
2016
, “
Isotropic 3D Black Blood MRI of Abdominal Aortic Aneurysm Wall and Intraluminal Thrombus
,”
Magn. Reson. Imaging
,
34
(
1
), pp.
18
25
.
30.
Raghavan
,
M. L.
,
Hanaoka
,
M. M.
,
Kratzberg
,
J. A.
,
de Lourdes Higuchi
,
M.
, and
da Silva
,
E. S.
,
2011
, “
Biomechanical Failure Properties and Microstructural Content of Ruptured and Unruptured Abdominal Aortic Aneurysms
,”
J. Biomech.
,
44
(
13
), pp.
2501
2507
.
31.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.
32.
Wang
,
D. H. J.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2001
, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
536
539
.
33.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2003
, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
804
809
.
34.
Gasser
,
T. C.
,
Görgülü
,
G.
,
Folkesson
,
M.
, and
Swedenborg
,
J.
,
2008
, “
Failure Properties of Intraluminal Thrombus in Abdominal Aortic Aneurysm Under Static and Pulsating Mechanical Loads
,”
J. Vasc. Surg.
,
48
(
1
), pp.
179
188
.
35.
Bols
,
J.
,
Degroote
,
J.
,
Trachet
,
B.
,
Verhegghe
,
B.
,
Segers
,
P.
, and
Vierendeels
,
J.
,
2013
, “
A Computational Method to Assess the In Vivo Stresses and Unloaded Configuration of Patient-Specific Blood Vessels
,”
J. Comput. Appl. Math.
,
246
, pp.
10
17
.
36.
Vande Geest
,
J. P.
,
Wang
,
D. H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1098
1106
.
37.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
,
1999
, “
In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
469
479
.
38.
Giannoglou
,
G.
,
Giannakoulas
,
G.
,
Soulis
,
J.
,
Chatzizisis
,
Y.
,
Perdikides
,
T.
,
Melas
,
N.
,
Parcharidis
,
G.
, and
Louridas
,
G.
,
2006
, “
Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion
,”
Angiology
,
57
(
4
), pp.
487
494
.
39.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.
40.
Zhu
,
C.
,
Leach
,
J. R.
,
Tian
,
B.
,
Cao
,
L.
,
Wen
,
Z.
,
Wang
,
Y.
,
Liu
,
X.
,
Liu
,
Q.
,
Lu
,
J.
,
Saloner
,
D.
, and
Hope
,
M. D.
,
2019
, “
Evaluation of the Distribution and Progression of Intraluminal Thrombus in Abdominal Aortic Aneurysms Using High-Resolution MRI
,”
J. Magn. Reson. Imaging
(epub).
41.
MA3RS Study Investigators
,
2017
, “
Aortic Wall Inflammation Predicts Abdominal Aortic Aneurysm Expansion, Rupture, and Need for Surgical Repair
,”
Circulation
,
136
(
9
), pp.
787
797
.
42.
Conlisk
,
N.
,
Forsythe
,
R. O.
,
Hollis
,
L.
,
Doyle
,
B. J.
,
McBride
,
O. M. B.
,
Robson
,
J. M. J.
,
Wang
,
C.
,
Gray
,
C. D.
,
Semple
,
S. I. K.
,
MacGillivray
,
T.
,
van Beek
,
E. J. R.
,
Newby
,
D. E.
, and
Hoskins
,
P. R.
,
2017
, “
Exploring the Biological and Mechanical Properties of Abdominal Aortic Aneurysms Using USPIO MRI and Peak Tissue Stress: A Combined Clinical and Finite Element Study
,”
J. Cardiovasc. Transl. Res.
,
10
(
5–6
), pp.
489
498
.
43.
Li
,
Z. Y.
,
King-Im J
,
U.
,
Tang
,
T. Y.
,
Soh
,
E.
,
See
,
T. C.
, and
Gillard
,
J. H.
,
2008
, “
Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
47
(
5
), pp.
928
935
.
44.
Mower
,
W. R.
,
Quiñones
,
W. J.
, and
Gambhir
,
S. S.
,
1997
, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
,
26
(
4
), pp.
602
608
.
45.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H.-H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.
46.
Pitton
,
M. B.
,
Schmenger
,
R. P.
,
Neufang
,
A.
,
Konerding
,
M. A.
,
Düber
,
C.
, and
Thelen
,
M.
,
2002
, “
Endovascular Aneurysm Repair: Magnetic Resonance Monitoring of Histological Organization Processes in the Excluded Aneurysm
,”
Circulation
,
105
(
16
), pp.
1995
1999
.
47.
Polzer
,
S.
,
Bursa
,
J.
,
Gasser
,
T. C.
,
Staffa
,
R.
, and
Vlachovsky
,
R.
,
2013
, “
A Numerical Implementation to Predict Residual Strains From the Homogeneous Stress Hypothesis With Application to Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1516
1527
.
48.
Pierce
,
D. M.
,
Fastl
,
T. E.
,
Rodriguez-Vila
,
B.
,
Verbrugghe
,
P.
,
Fourneau
,
I.
,
Maleux
,
G.
,
Herijgers
,
P.
,
Gomez
,
E. J.
, and
Holzapfel
,
G. A.
,
2015
, “
A Method for Incorporating Three-Dimensional Residual Stretches/Stresses Into Patient-Specific Finite Element Simulations of Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
47
, pp.
147
164
.
You do not currently have access to this content.