Respiration is a dynamic process accompanied by morphological changes in the airways. Although deformation of large airways is expected to exacerbate pulmonary disease symptoms by obstructing airflow during increased minute ventilation, its quantitative effects on airflow characteristics remain unclear. Here, we used in vivo dynamic imaging and examined the effects of tracheal deformation on airflow characteristics under different conditions based on imaging data from a single healthy volunteer. First, we measured tracheal deformation profiles of a healthy lung using magnetic resonance imaging (MRI) during forced exhalation, which we simulated to characterize the subject-specific airflow patterns. Subsequently, for both inhalation and exhalation, we compared the airflows when the modeled deformation in tracheal cross-sectional area was 0% (rigid), 33% (mild), 50% (moderate), or 75% (severe). We quantified differences in airflow patterns between deformable and rigid airways by computing the correlation coefficients (R) and the root-mean-square of differences (Drms) between their velocity contours. For both inhalation and exhalation, airflow patterns were similar in all branches between the rigid and mild conditions (R > 0.9; Drms < 32%). However, airflow characteristics in the moderate and severe conditions differed markedly from those in the rigid and mild conditions in all lung branches, particularly for inhalation (moderate: R > 0.1, Drms < 76%; severe: R > 0.2, Drms < 96%). Our exemplar study supports the use of a rigid airway assumption to compute flows for mild deformation. For moderate or severe deformation, however, dynamic contraction should be considered, especially during inhalation, to accurately predict airflow and elucidate the underlying pulmonary pathology.

References

References
1.
Buitrago
,
D. H.
,
Wilson
,
J. L.
,
Parikh
,
M.
,
Majid
,
A.
, and
Gangadharan
,
S. P.
,
2017
, “
Current Concepts in Severe Adult Tracheobronchomalacia: Evaluation and Treatment
,”
J. Thorac. Dis.
,
9
(
1
), pp.
E57
E66
.
2.
Carden
,
K. A.
,
Boiselle
,
P. M.
,
Waltz
,
D. A.
, and
Ernst
,
A.
,
2005
, “
Tracheomalacia and Tracheobronchomalacia in Children and Adults: An In-Depth Review
,”
Chest
,
127
(
3
), pp.
984
1005
.
3.
Leong
,
P.
,
Tran
,
A.
,
Rangaswamy
,
J.
,
Ruane
,
L. E.
,
Fernando
,
M. W.
,
MacDonald
,
M. I.
,
Lau
,
K. K.
, and
Bardin
,
P. G.
,
2017
, “
Expiratory Central Airway Collapse in Stable COPD and During Exacerbations
,”
Respir. Res.
,
18
(
1
), p.
163
.
4.
Chetambath
,
R.
,
2016
, “
Tracheobronchomalacia in Obstructive Airway Diseases
,”
Lung India
,
33
(
4
), pp.
451
452
.
5.
Newell
,
J. D. J.
,
Fuld
,
M. K.
,
Allmendinger
,
T.
,
Sieren
,
J. P.
,
Chan
,
K.-S.
,
Guo
,
J.
, and
Hoffman
,
E. A.
,
2015
, “
Very Low-Dose (0.15 mGy) Chest CT Protocols Using the COPDGENE 2 Test Object and a Third-Generation Dual-Source CT Scanner With Corresponding Third-Generation Iterative Reconstruction Software
,”
Invest. Radiol.
,
50
(
1
), pp.
40
45
.
6.
Weinstein
,
D. J.
,
Hull
,
J. E.
,
Ritchie
,
B. L.
,
Hayes
,
J. A.
, and
Morris
,
M. J.
,
2016
, “
Exercise-Associated Excessive Dynamic Airway Collapse in Military Personnel
,”
Ann. Am. Thorac. Soc.
,
13
(
9
), pp.
1476
1482
.
7.
Loring
,
S. H.
,
O'Donnell
,
C. R.
,
Feller-Kopman
,
D. J.
, and
Ernst
,
A.
,
2007
, “
Central Airway Mechanics and Flow Limitation in Acquired Tracheobronchomalacia
,”
Chest
,
131
(
4
), pp.
1118
1124
.
8.
Ellingsen
,
I.
, and
Holmedahl
,
N. H.
,
2014
, “
Does Excessive Dynamic Airway Collapse Have Any Impact on Dynamic Pulmonary Function Tests?
,”
J. Bronchology Interventional Pulmonol.
,
21
(
1
), pp.
40
46
.
9.
Wall
,
W. A.
, and
Rabczuk
,
T.
,
2008
, “
Fluid–Structure Interaction in Lower Airways of CT-Based Lung Geometries
,”
Int. J. Numer. Methods Fluids
,
57
(
5
), pp.
653
675
.
10.
Xia
,
G.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C. L.
,
2010
, “
Airway Wall Stiffening Increases Peak Wall Shear Stress: A Fluid-Structure Interaction Study in Rigid and Compliant Airways
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1836
1853
.
11.
Malvè
,
M.
,
del Palomar
,
A. P.
,
López-Villalobos
,
J. L.
,
Ginel
,
A.
, and
Doblaré
,
M.
,
2010
, “
FSI Analysis of the Coughing Mechanism in a Human Trachea
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1556
1565
.
12.
Hollister
,
S. J.
,
Hollister
,
M. P.
, and
Hollister
,
S. K.
,
2017
, “
Computational Modeling of Airway Instability and Collapse in Tracheomalacia
,”
Respir. Res.
,
18
(
1
), p.
62
.
13.
Eskandari
,
M.
,
Arvayo
,
A. L.
, and
Levenston
,
M. E.
,
2018
, “
Mechanical Properties of the Airway Tree: Heterogeneous and Anisotropic Pseudoelastic and Viscoelastic Tissue Responses
,”
J. Appl. Physiol.
,
125
(
3
), pp.
878
888
.
14.
Miyawaki
,
S.
,
Hoffman
,
E. A.
, and
Lin
,
C. L.
,
2016
, “
Effect of Static vs. dynamic Imaging on Particle Transport in CT-Based Numerical Models of Human Central Airways
,”
J. Aerosol Sci.
,
100
, pp.
129
139
.
15.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C.-L.
,
2013
, “
A Multiscale MDCT Image-Based Breathing Lung Model With Time-Varying Regional Ventilation
,”
J. Comput. Phys.
,
244
, pp.
168
192
.
16.
Choi
,
S.
,
Miyawaki
,
S.
, and
Lin
,
C. L.
,
2018
, “
A Feasible Computational Fluid Dynamics Study for Relationships of Structural and Functional Alterations With Particle Depositions in Severe Asthmatic Lungs
,”
Comput. Math. Methods Med.
,
2018
, p.
6564854
.
17.
Ibrahim
,
G.
,
Hainsworth
,
S. V.
, and
Rona
,
A.
,
2012
, “
Airflow Simulation Through a Dynamic Subject-Specific Model of the Central Airways
,”
International Conference on Applications of Fluid Engineering
, Greater Noida, India, Sept. 20–22, pp.
1
6
.https://pdfs.semanticscholar.org/cd8e/1ea6aefdf4015988364777462a319a987bf5.pdf
18.
Yin
,
Y.
,
Hoffman
,
E. A.
,
Ding
,
K.
,
Reinhardt
,
J. M.
, and
Lin
,
C. L.
,
2011
, “
A Cubic b-Spline-Based Hybrid Registration of Lung CT Images for a Dynamic Airway Geometric Model With Large Deformation
,”
Phys. Med. Biol.
,
56
(
1
), pp.
203
218
.
19.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C. L.
,
2010
, “
Simulation of Pulmonary Air Flow With a Subject-Specific Boundary Condition
,”
J. Biomech.
,
43
(
11
), pp.
2159
2163
.
20.
Murgu
,
S.
, and
Stoy
,
S.
,
2016
, “
Excessive Dynamic Airway Collapse: A Standalone Cause of Exertional Dyspnea?
,”
Ann. Am. Thorac. Soc.
,
13
(
9
), pp.
1437
1439
.
21.
Dowdy
,
S. M.
,
Wearden
,
S.
, and
Chilko
,
D. M.
,
2004
,
Statistics for Research
,
Wiley
,
Hoboken, NJ
.
22.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. W.
,
2012
,
Fluid Mechanics
,
Academic Press
,
Waltham, MA
.
23.
Sul
,
B.
,
Oppito
,
Z.
,
Jayasekera
,
S.
,
Vanger
,
B.
,
Zeller
,
A.
,
Morris
,
M.
,
Ruppert
,
K.
,
Altes
,
T.
,
Rakesh
,
V.
,
Day
,
S.
,
Robinson
,
R.
,
Reifman
,
J.
, and
Wallqvist
,
A.
,
2018
, “
Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro
,”
ASME J. Biomech. Eng.
,
140
(
5
), p.
051009
.
24.
Loudon
,
C.
, and
Tordesillas
,
A.
,
1998
, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
,
191
(
1
), pp.
63
78
.
25.
Sul
,
B.
,
Wallqvist
,
A.
,
Morris
,
M. J.
,
Reifman
,
J.
, and
Rakesh
,
V.
,
2014
, “
A Computational Study of the Respiratory Airflow Characteristics in Normal and Obstructed Human Airways
,”
Comput. Biol. Med.
,
52
, pp.
130
143
.
26.
Sidhaye
,
V. K.
,
Schweitzer
,
K. S.
,
Caterina
,
M. J.
,
Shimoda
,
L.
, and
King
,
L. S.
,
2008
, “
Shear Stress Regulates Aquaporin-5 and Airway Epithelial Barrier Function
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
9
), pp.
3345
3350
.
27.
Comerford
,
A.
,
Förster
,
C.
, and
Wall
,
W. A.
,
2010
, “
Structured Tree Impedance Outflow Boundary Conditions for 3D Lung Simulations
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081002
.
28.
Kuprat
,
A. P.
,
Kabilan
,
S.
,
Carson
,
J. P.
,
Corley
,
R. A.
, and
Einstein
,
D. R.
,
2013
, “
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling
,”
J. Comput. Phys.
,
244
, pp.
148
167
.
29.
Wall
,
W. A.
,
Wiechert
,
L.
,
Comerford
,
A.
, and
Rausch
,
S.
,
2010
, “
Towards a Comprehensive Computational Model for the Respiratory System
,”
Int. J. Numer. Meth. Biomed. Eng.
,
26
(
7
), pp.
807
827
.
30.
Boiselle
,
P. M.
,
Michaud
,
G.
,
Roberts
,
D. H.
,
Loring
,
S. H.
,
Womble
,
H. M.
,
Millett
,
M. E.
, and
O'Donnell
,
C. R.
,
2012
, “
Dynamic Expiratory Tracheal Collapse in COPD: Correlation With Clinical and Physiologic Parameters
,”
Chest
,
142
(
6
), pp.
1539
1544
.
31.
Rutten
,
M.
,
Ciet
,
P.
,
van den Biggelaar
,
R.
,
Oussoren
,
E.
,
Langendonk
,
J. G.
,
van der Ploeg
,
A. T.
, and
Langeveld
,
M.
,
2016
, “
Severe Tracheal and Bronchial Collapse in Adults With Type II Mucopolysaccharidosis
,”
Orphanet J. Rare Dis.
,
11
, p.
50
.
32.
Kolanjiyil
,
A. V.
,
Kleinstreuer
,
C.
, and
Sadikot
,
R. T.
,
2017
, “
Computationally Efficient Analysis of Particle Transport and Deposition in a Human Whole-Lung-Airway Model—Part II: Dry Powder Inhaler Application
,”
Comput. Biol. Med.
,
84
, pp.
247
253
.
33.
Kolanjiyil
,
A. V.
, and
Kleinstreuer
,
C.
,
2017
, “
Computational Analysis of Aerosol-Dynamics in a Human Whole-Lung Airway Model
,”
J. Aerosol Sci.
,
114
, pp.
301
316
.
34.
Kannan
,
R.
,
Guo
,
P.
, and
Przekwas
,
A.
,
2016
, “
Particle Transport in the Human Respiratory Tract: Formulation of a Nodal Inverse Distance Weighted Eulerian–Lagrangian Transport and Implementation of the Wind–Kessel Algorithm for an Oral Delivery
,”
Int. J. Numer. Meth. Biomed. Eng.
,
32
(
6
), p.
e02746
.
35.
Suh
,
Y.
, and
Park
,
J. Y.
,
2018
, “
Effect of Off-Plane Bifurcation Angles of Primary Bronchi on Expiratory Flows in the Human Trachea
,”
Comput. Biol. Med.
,
95
, pp.
63
74
.
36.
De Lange
,
E. E.
,
Altes
,
T. A.
,
Patrie
,
J. T.
,
Parmar
,
J.
,
Brookeman
,
J. R.
,
Mugler
,
J. P.
, III
, and
Platts-Mills
,
T. A.
,
2007
, “
The Variability of Regional Airflow Obstruction Within the Lungs of Patients With Asthma: Assessment With Hyperpolarized Helium-3 Magnetic Resonance Imaging
,”
J. Allergy Clin. Immunol.
,
119
(
5
), pp.
1072
1078
.
37.
Newell
,
J.
,
Hoffman
,
E.
,
Albert
,
M.
, and
Couch
,
M.
,
2017
, “
CT and MRI Gas Ventilation Imaging of the Lungs
,”
Hyperpolarized and Inert Gas MRI
,
Elsevier
,
Cambridge, MA
, pp.
211
222
.
38.
Thomen
,
R. P.
,
Sheshadri
,
A.
,
Quirk
,
J. D.
,
Kozlowski
,
J.
,
Ellison
,
H. D.
,
Szczesniak
,
R. D.
,
Castro
,
M.
, and
Woods
,
J. C.
,
2015
, “
Regional Ventilation Changes in Severe Asthma After Bronchial Thermoplasty With 3He MR Imaging and CT
,”
Radiology
,
274
(
1
), pp.
250
259
.
39.
Murgu
,
S. D.
, and
Colt
,
H. G.
,
2006
, “
Tracheobronchomalacia and Excessive Dynamic Airway Collapse
,”
Respirology
,
11
(
4
), pp.
388
406
.
40.
Zafar
,
M. A.
,
Mulhall
,
A. M.
,
Eschenbacher
,
W.
,
Kaul
,
A.
,
Benzaquen
,
S.
, and
Panos
,
R. J.
,
2017
, “
Manometry Optimized Positive Expiratory Pressure (MOPEP) in Excessive Dynamic Airway Collapse (EDAC)
,”
Respir. Med.
,
131
, pp.
179
183
.
41.
Karmakar
,
A.
,
Pate
,
M. B.
,
Solowski
,
N. L.
,
Postma
,
G. N.
, and
Weinberger
,
P. M.
,
2015
, “
Tracheal Size Variability Is Associated With Sex: Implications for Endotracheal Tube Selection
,”
Ann. Otol. Rhinol. Laryngol.
,
124
(
2
), pp.
132
136
.
You do not currently have access to this content.