Whiplash injuries continue to be a concern in low-speed rear impact. This study was designed to investigate the role of variations in spine morphology and head inertia properties on cervical spine segmental rotation in rear-impact whiplash loading. Vertebral morphology is rarely considered as an input parameter in spine finite element (FE) models. A methodology toward considering morphological variations as input parameters and identifying the influential variations is presented in this paper. A cervical spine FE model, with its morphology parametrized using mesh morphing, was used to study the influence of disk height, anteroposterior vertebral depth, and segmental size, as well as variations in head mass, moment of inertia, and center of mass locations. The influence of these variations on the characteristic S-curve formation in whiplash response was evaluated using the peak C2–C3 flexion marking the maximum S-curve formation and time taken for the formation of maximum S-curve. The peak C2–C3 flexion in the S-curve formation was most influenced by disk height and vertebral depth, followed by anteroposterior head center of mass location. The time to maximum S-curve was most influenced by the anteroposterior location of head center of mass. The influence of gender-dependent variations, such as the vertebral depth, suggests that they contribute to the greater segmental rotations observed in females resulting in different S-curve formation from men. These results suggest that both spine morphology and head inertia properties should be considered to describe rear-impact responses.

References

References
1.
Yoganandan
,
N.
, and
Pintar
,
F. A.
, eds.,
2000
,
Frontiers in Whiplash Trauma
,
IOS Press
,
Amsterdam, The Netherlands
.
2.
Siegmund
,
G. P.
,
Winkelstein
,
B. A.
,
Ivancic
,
P. C.
,
Svensson
,
M. Y.
, and
Vasavada
,
A.
,
2009
, “
The Anatomy and Biomechanics of Acute and Chronic Whiplash Injury
,”
Traffic Inj. Prev.
,
10
(
2
), pp.
101
112
.
3.
Curatolo
,
M.
,
Bogduk
,
N.
,
Ivancic
,
P. C.
,
McLean
,
S. A.
,
Siegmund
,
G. P.
, and
Winkelstein
,
B. A.
,
2011
, “
The Role of Tissue Damage in Whiplash-Associated Disorders
,”
Spine (Phila. Pa. 1976)
,
36
(
25
), pp.
S309
S315
.https://www.ncbi.nlm.nih.gov/pubmed/22020601
4.
Lord
,
S. M.
,
Barnsley
,
L.
,
Wallis
,
B. J.
, and
Bogduk
,
N.
,
1996
, “
Chronic Cervical Zygapophysial Joint Pain After Whiplash
,”
Spine (Phila. Pa. 1976)
,
21
(
15
), pp.
1737
1745
.https://www.ncbi.nlm.nih.gov/pubmed/8855458
5.
Barnsley
,
L.
,
Lord
,
S. M.
,
Wallis
,
B. J.
, and
Bogduk
,
N.
,
1995
, “
The Prevalence of Chronic Cervical Zygapophysial Joint Pain After Whiplash
,”
Spine (Phila. Pa. 1976)
,
20
(
1
), pp.
20
25
.
6.
Lord
,
S. M.
,
Barmsley
,
L.
,
Wallis
,
B. J.
, and
Bogduk
,
N.
,
1994
, “
Third Occipital Nerve Headache: A Prevalence Study
,”
J. Neurol., Neurosurg. Psychiatry
,
57
(
10
), pp.
1187
1190
.
7.
Cusick
,
J. F.
,
Pintar
,
F. A.
, and
Yoganandan
,
N.
,
2001
, “
Whiplash Syndrome: Kinematic Factors Influencing Pain Patterns
,”
Spine (Phila. Pa. 1976)
,
26
(
11
), pp.
1252
1258
.https://www.ncbi.nlm.nih.gov/pubmed/11389392
8.
Deng
,
B.
,
Begeman
,
P. C.
,
Yang
,
K. H.
,
Tashman
,
S.
, and
King
,
A. I.
,
2000
, “
Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts
,”
Stapp Car Crash J.
,
44
, pp.
171
188
.
9.
Ono
,
K.
, and
Kaneoka
,
K.
,
1999
, “
Motion Analysis of Human Cervical Vertebrae During Low-Speed Rear Impacts by the Simulated Sled
,”
J. Crash Prev. Inj. Control
,
1
(
2
), pp.
87
99
.
10.
Kang
,
Y.-S.
,
Moorhouse
,
K.
,
Icke
,
K.
,
Herriott
,
R.
, and
Bolte
,
J. H.
,
2014
, “
Head and Cervical Spine Responses of Post Mortem Human Subjects in Moderate Speed Rear Impacts
,”
IRCOBI Conference Proceedings
,
Berlin, Germany
, Sept. 10–12 pp.
268
285
.
11.
Sato
,
F.
,
Nakajima
,
T.
,
Ono
,
K.
,
Svensson
,
M. Y.
,
Brolin
,
K.
, and
Kaneoka
,
K.
,
2014
, “
Dynamic Cervical Vertebral Motion of Female and Male Volunteers and Analysis of Its Interaction With Head/Neck/Torso Behavior During Low-Speed Rear Impact
,”
IRCOBI Conference
,
Berlin, Germany
, Sept. 10–12, pp.
227
249
.
12.
Stemper
,
B. D.
,
Pintar
,
F. A.
, and
Rao
,
R. D.
,
2011
, “
The Influence of Morphology on Cervical Injury Characteristics
,”
Spine (Phila. Pa. 1976)
,
36
(
Suppl. 25
), pp.
S180
S186
.https://www.ncbi.nlm.nih.gov/pubmed/22101749
13.
Milne
,
N.
,
1991
, “
The Role of Zygapophysial Joint Orientation and Uncinate Processes in Controlling Motion in the Cervical Spine
,”
J. Anat.
,
178
, pp.
189
201
.
14.
Frobin
,
W.
,
Leivseth
,
G.
,
Biggemann
,
M.
, and
Brinckmann
,
P.
,
2002
, “
Vertebral Height, Disc Height, Posteroanterior Displacement and Dens-Atlas Gap in the Cervical Spine: Precision Measurement Protocol and Normal Data
,”
Clin. Biomech.
,
17
(
6
), pp.
423
431
.
15.
Ebraheim
,
N. A.
,
Fow
,
J.
,
Xu
,
R.
, and
Yeasting
,
R. A.
,
1998
, “
The Vertebral Body Depths of the Cervical Spine and Its Relation to Anterior Plate-Screw Fixation
,”
Spine (Phila. Pa. 1976)
,
23
(
21
), pp.
2299
302
.https://www.ncbi.nlm.nih.gov/pubmed/?term=The+Vertebral+Body+Depths+of+the+Cervical+Spine+and+Its+Relation+to+Anterior+Plate-Screw+Fixation
16.
Hukuda
,
S.
, and
Kojima
,
Y.
,
2002
, “
Sex Discrepancy in the Canal/Body Ratio of the Cervical Spine Implicating the Prevalence of Cervical Myelopathy in Men
,”
Spine (Phila. Pa. 1976)
,
27
(
3
), pp.
250
253
.https://www.ncbi.nlm.nih.gov/pubmed/?term=Sex+Discrepancy+in+the+Canal%2FBody+Ratio+of+the+Cervical+Spine+Implicating+the+Prevalence+of+Cervical+Myelopathy+in+Men
17.
Parenteau
,
C. S.
,
Wang
,
N. C.
,
Zhang
,
P.
,
Caird
,
M. S.
, and
Wang
,
S. C.
,
2014
, “
Quantification of Pediatric and Adult Cervical Vertebra-Anatomical Characteristics by Age and Gender for Automotive Application
,”
Traffic Inj. Prev.
,
15
(
6
), pp.
572
582
.
18.
Klinich
,
K. D.
,
Ebert
,
S. M.
,
Van Ee
,
C. A.
,
Flannagan
,
C. A. C.
,
Prasad
,
M.
,
Reed
,
M. P.
, and
Schneider
,
L. W.
,
2004
, “
Cervical Spine Geometry in the Automotive Seated Posture: Variations With Age, Stature, and Gender
,”
48th Stapp Car Crash Conference
,
Nashville, TN
, Nov. 1–3, pp.
301
330
.
19.
Gilad
,
I.
, and
Nissan
,
M.
,
1986
, “
A Study of Vertebra and Disc Geometric Relations of the Human Cervical and Lumbar Spine
,”
Spine (Phila. Pa. 1976)
,
11
(
2
), pp.
154
157
.
20.
Vasavada
,
A. N.
,
Danaraj
,
J.
, and
Siegmund
,
G. P.
,
2008
, “
Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women
,”
J. Biomech.
,
41
(
1
), pp.
114
121
.
21.
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
,
Meyer
,
M. A.
,
DeRosia
,
J.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2008
, “
Anatomical Gender Differences in Cervical Vertebrae of Size-Matched Volunteers
,”
Spine (Phila. Pa. 1976)
,
33
(
2
), pp.
44
49
.https://www.ncbi.nlm.nih.gov/pubmed/?term=Meyer%2C+M.+A.%2C+DeRosia%2C+J.%2C+Shender%2C+B.+S.%2C+and+Paskoff%2C+G.%2C+2008
22.
Dehner
,
C.
,
Schick
,
S.
,
Arand
,
M.
,
Elbel
,
M.
,
Hell
,
W.
, and
Kramer
,
M.
,
2008
, “
Influence of Anthropometry on the Kinematics of the Cervical Spine and the Risk of Injury in Sled Tests in Female Volunteers
,”
Accid. Anal. Prev.
,
40
(
4
), pp.
1305
1312
.
23.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Zhang
,
J.
, and
Baisden
,
J. L.
,
2009
, “
Physical Properties of the Human Head: Mass, Center of Gravity and Moment of Inertia
,”
J. Biomech.
,
42
(
9
), pp.
1177
1192
.
24.
Meyer
,
F.
,
Bourdet
,
N.
,
Deck
,
C.
,
Willinger
,
R.
, and
Raul
,
J. S.
,
2004
, “
Human Neck Finite Element Model Development and Validation Against Original Experimental Data
,”
48th Stapp Car Crash Conference
, Nov. 1–3 pp.
177
206
.
25.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.
26.
Meyer
,
F.
,
Bourdet
,
N.
,
Gunzel
,
K.
, and
Willinger
,
R.
,
2013
, “
Development and Validation of a Coupled Head-Neck FEM—Application to Whiplash Injury Criteria Investigation
,”
Int. J. Crashworthiness
,
18
(
1
), pp.
40
63
.
27.
Zhang
,
Q. H.
,
Tan
,
S. H.
, and
Teo
,
E. C.
,
2008
, “
Finite Element Analysis of Head-Neck Kinematics Under Simulated Rear Impact at Different Accelerations
,”
Proc. Inst. Mech. Eng., Part H
,
222
(
5
), pp.
781
790
.
28.
Hedenstierna
,
S.
,
Halldin
,
P.
, and
Siegmund
,
G. P.
,
2009
, “
Neck Muscle Load Distribution in Lateral, Frontal, and Rear-End Impacts: A Three-Dimensional Finite Element Analysis
,”
Spine (Phila. Pa. 1976)
,
34
(
24
), pp.
2626
2633
.https://www.ncbi.nlm.nih.gov/pubmed/?term=Neck+Muscle+Load+Distribution+in+Lateral%2C+Frontal%2C+and+Rear-End+Impacts%3A+A+Three-Dimensional+Finite+Element+Analysis
29.
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2012
, “
Investigation of Whiplash Injuries in the Upper Cervical Spine Using a Detailed Neck Model
,”
J. Biomech.
,
45
(
6
), pp.
1098
1102
.
30.
Cronin
,
D. S.
,
2014
, “
Finite Element Modeling of Potential Cervical Spine Pain Sources in Neutral Position Low Speed Rear Impact
,”
J. Mech. Behav. Biomed. Mater.
,
33
(
1
), pp.
55
66
.
31.
Shateri
,
H.
, and
Cronin
,
D. S.
,
2015
, “
Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model
,”
Traffic Inj. Prev.
,
16
(
7
), pp.
698
708
.
32.
Jolivet
,
E.
,
Lafon
,
Y.
,
Petit
,
P.
, and
Beillas
,
P.
,
2015
, “
Comparison of Kriging and Moving Least Square Methods to Change the Geometry of Human Body Models
,”
59th Stapp Car Crash Conference
, Nov. 9–11, pp.
337
357
.
33.
Klein
,
K. F.
,
Hu
,
J.
,
Reed
,
M. P.
,
Hoff
,
C. N.
, and
Rupp
,
J. D.
,
2015
, “
Development and Validation of Statistical Models of Femur Geometry for Use With Parametric Finite Element Models
,”
Ann. Biomed. Eng.
,
43
(
10
), pp.
2503
2514
.
34.
Alvarez
,
V. S.
, and
Kleiven
,
S.
,
2018
, “
Effect of Pediatric Growth on Cervical Spine Kinematics and Deformations in Automotive Crashes
,”
J. Biomech.
,
71
, pp.
76
83
.
35.
John
,
J. D.
,
Saravana Kumar
,
G.
, and
Yoganandan
,
N.
,
2019
, “
Cervical Spine Morphology and Ligament Property Variations: A Finite Element Study of Their Influence on Sagittal Bending Characteristics
,”
J. Biomech.
,
85
, pp.
18
26
.
36.
John
,
J. D.
,
Yoganandan
,
N.
,
Arun
,
M. W. J.
, and
Saravana Kumar
,
G.
,
2018
, “
Influence of Morphological Variations on Cervical Spine Segmental Responses From Inertial Loading
,”
Traffic Inj. Prev.
,
19
(
Suppl. 1
), pp.
S29
S36
.
37.
John
,
J. D.
,
Arun
,
M. W. J.
,
Saravana Kumar
,
G.
, and
Yoganandan
,
N.
,
2017
, “
Cervical Spine Finite Element Model With Anatomically Accurate Asymmetric Intervertebral Discs
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference
,
Tucson, AZ
, June 21–24 June, pp.
153
154
.
38.
John
,
J. D.
,
Arun
,
M. W. J.
,
Yoganandan
,
N.
,
Saravana Kumar
,
G.
, and
Kurpad
,
S. N.
,
2017
, “
Mapping Block-Based Morphing for Subject-Specific Spine Finite Element Models
,”
54th Annual Rocky Mountain Bioengineering Symposium
,
Denver, CO
, Mar. 31–Apr. 1, pp.
193
199
.
39.
Mercer
,
S.
, and
Bogduk
,
N.
,
1999
, “
The Ligaments and Annulus Fibrosus of Human Adult Cervical Intervertebral Discs
,”
Spine (Phila. Pa. 1976)
,
24
(
7
), pp.
619
626
.https://www.ncbi.nlm.nih.gov/pubmed/10888961
40.
Tonetti
,
J.
,
Potton
,
L.
,
Riboud
,
R.
,
Peoc'h
,
M.
,
Passagia
,
J.-G.
, and
Chirossel
,
J.-P.
,
2005
, “
Morphological Cervical Disc Analysis Applied to Traumatic and Degenerative Lesions
,”
Surg. Radiol. Anat.
,
27
(
3
), pp.
192
200
.
41.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.
42.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.
43.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2013
, “
Strain Rate Dependent Properties of Human Craniovertebral Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
71
79
.
44.
Östh
,
J.
,
Mendoza-Vazquez
,
M.
,
Sato
,
F.
,
Svensson
,
M. Y.
,
Linder
,
A.
, and
Brolin
,
K.
,
2017
, “
A Female Head–Neck Model for Rear Impact Simulations
,”
J. Biomech.
,
51
, pp.
49
56
.
45.
Borst
,
J.
,
Forbes
,
P. A.
,
Happee
,
R.
, and
Veeger
,
D.
,
2011
, “
Muscle Parameters for Musculoskeletal Modelling of the Human Neck
,”
Clin. Biomech.
,
26
(
4
), pp.
343
351
.
46.
Bayoglu
,
R.
,
Geeraedts
,
L.
,
Groenen
,
K. H. J.
,
Verdonschot
,
N.
,
Koopman
,
B.
, and
Homminga
,
J.
,
2017
, “
Twente Spine Model: A Complete and Coherent Dataset for Musculo-Skeletal Modeling of the Thoracic and Cervical Regions of the Human Spine
,”
J. Biomech.
,
58
, pp.
52
63
.
47.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1975
, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
,
8
(
6
), pp.
393
396
.
48.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
,
V. H.
,
1974
, “
The Elastic Modulus for Bone
,”
J. Biomech.
,
7
(
3
), pp.
271
275
.
49.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
(
7
), pp.
601
608
.
50.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Baisden
,
J. L.
,
Aktay
,
R.
,
Shender
,
B. S.
,
Paskoff
,
G.
, and
Laud
,
P.
,
2006
, “
Trabecular Bone Density of Male Human Cervical and Lumbar Vertebrae
,”
Bone
,
39
(
2
), pp.
336
344
.
51.
Östh
,
J.
,
Brolin
,
K.
,
Svensson
,
M. Y.
, and
Linder
,
A.
,
2016
, “
A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads
,”
ASME J. Biomech. Eng.
,
138
(
6
), p.
061005
.
52.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
(
6
), pp.
535
544
.
53.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4-C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.
54.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.
55.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
56.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging
,”
J. Orthop. Res.
,
15
(
2
), pp.
318
322
.
57.
Yamada
,
H.
,
1970
,
Strength of Biological Materials
,
Williams & Wilkins
,
Baltimore, MD
.
58.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
59.
Östh
,
J.
,
Brolin
,
K.
, and
Happee
,
R.
,
2012
, “
Active Muscle Response Using Feedback Control of a Finite Element Human Arm Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
4
), pp.
347
361
.
60.
Chandler
,
R. F.
,
Clauser
,
C. E.
,
McConville
,
J. T.
,
Reynolds
,
H. M.
, and
Young
,
J. W.
,
1975
, “
Investigation of Inertial Properties of the Human Body
,” National Highway Traffic Safety Administration,
Springfield, VA
, pp.
1
169
.
61.
Plaga
,
J. A.
,
Funke
,
G. J.
,
Galster
,
S. M.
, and
Nelson
,
W. T.
,
2006
, “
Design and Development of Anthropometrically Correct Head Forms for Joint Strike Fighter Ejection Seat Testing
,” Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, Report No. AFRL-HE-WP-TR-2005-0044.
62.
Walker
,
L. B.
,
Harris
,
E. H.
, and
Pontius
,
U. R.
,
1973
, “
Mass, Volume, Center of Mass and Mass Moment of Inertia of Head and Head and Neck of Human Body
,”
Stapp Car Crash Conference
,
Warrendale, PA
, Nov. 17–19, pp.
525
537
.
63.
Beier
,
G.
,
Schuller
,
E.
,
Schuck
,
M.
,
Ewing
,
C. L.
,
Becker
,
E. D.
, and
Thomas
,
D. J.
,
1980
, “
Center of Gravity and Moments of Inertia of Human Heads
,”
Fifth International IRCOBI Conference on the Biomechanics of Impacts
, Birmingham, UK, Sept. 9–11, pp.
218
228
.
64.
John
,
J. D.
,
Yoganandan
,
N.
,
Arun
,
M. W. J.
, and
Saravana Kumar
,
G.
,
2018
, “
Contribution of Forces and Morphology to Segmental Rotation During Combined Loading of Cervical Spine: Investigation Using Parametric Finite Element Models
,”
IRCOBI Asia 2018
, Lonavala, India, Apr. 25–27, pp.
72
75
.
65.
John
,
J. D.
,
Saravana Kumar
,
G.
,
Arun
,
M. W. J.
, and
Yoganandan
,
N.
,
2018
, “
Which Geometric Variations in the Cervical Spine Influence Vertebral Rotations Under Combined Loading?
,”
IRCOBI Conference
,
Athens, Greece
, Sept. 12–14, pp.
150
156
.
66.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2004
, “
Response Corridors of the Human Head-Neck Complex in Rear Impact
,”
Annu. Proc. Assoc. Adv. Automot. Med.
,
48
, pp.
149
163
.
67.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2003
, “
Gender Dependent Cervical Spine Segmental Kinematics During Whiplash
,”
J. Biomech.
,
36
(
9
), pp.
1281
1289
.
68.
Siegmund
,
G. P.
,
2018
, “
Soft Tissue Neck Injuries and Other Important Things—Bertil Aldman Memorial Lecture
,”
IRCOBI Conference
, Athens, Greece, Sept. 12–14.
69.
Holsgrove
,
T. P.
,
Jaumard
,
N. V.
,
Zhu
,
N.
,
Stiansen
,
N. S.
,
Welch
,
W. C.
, and
Winkelstein
,
B. A.
,
2016
, “
Upper Cervical Spine Loading Simulating a Dynamic Low-Speed Collision Significantly Increases the Risk of Pain Compared to Quasi-Static Loading With Equivalent Neck Kinematics
,”
ASME J. Biomech. Eng.
,
138
(
12
), p.
121006
.
70.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
71.
Joseph
,
V. R.
,
2016
, “
Space-Filling Designs for Computer Experiments: A Review
,”
Qual. Eng.
,
28
(
1
), pp.
28
35
.
72.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
73.
Stander
,
N.
,
Roux
,
W.
,
Basudhar
,
A.
,
Eggleston
,
T.
,
Goel
,
T.
, and
Craig
,
K.
,
2015
, “
LS-OPT® User's Manual—A Design Optimization and Probabilistic Analysis Tool
,”
Livermore Software Technology Corporation
,
Livermore, CA
.
74.
Kleijnen
,
J. P. C.
,
2008
,
Design and Analysis of Simulation Experiments
,
Springer
,
New York
.
75.
Sato
,
F.
,
Nakajima
,
T.
,
Ono
,
K.
,
Svensson
,
M. Y.
, and
Kaneoka
,
K.
,
2015
, “
Characteristics of Dynamic Cervical Vertebral Kinematics for Female and Male Volunteers in Low-Speed Rear Impact, Based on Quasi-Static Neck Kinematics
,”
IRCOBI Conference
,
Lyon, France
, Sept. 9–11, pp.
356
372
.
76.
Temming
,
J.
, and
Zobel
,
R.
,
1998
, “
Frequency and Risk of Cervical Spine Distortion Injuries in Passenger Car Accidents: Significance of Human Factor Data
,”
IRCOBI Conference
,
Gothenburg, Sweden
, Sept. 16–18, pp.
219
233
.
77.
Jakobsson
,
L.
,
Lundell
,
B.
,
Norin
,
H.
, and
Isaksson-Hellman
,
I.
,
2000
, “
WHIPS—Volvo's Whiplash Protection Study
,”
Accid. Anal. Prev.
,
32
(
2
), pp.
307
319
.
78.
Linder
,
A.
,
Carlsson
,
A.
,
Svensson
,
M. Y.
, and
Siegmund
,
G. P.
,
2008
, “
Dynamic Responses of Female and Male Volunteers in Rear Impacts
,”
Traffic Inj. Prev.
,
9
(
6
), pp.
592
599
.
You do not currently have access to this content.