Distribution of lung tissue within the chest cavity is a key contributor to delivery of both blood and air to the gas exchange regions of the lung. This distribution is multifactorial with influences from parenchyma, gravity, and level of inflation. We hypothesize that the manner in which lung inflates, for example, the primarily diaphragmatic nature of normal breathing, is an important contributor to regional lung tissue distribution. To investigate this hypothesis, we present an organ-level model of lung tissue mechanics, which incorporates pleural cavity change due to change in lung volume or posture. We quantify the changes using shape and density metrics in ten healthy subjects scanned supine at end-inspiratory and end-expiratory volumes and ten subjects scanned at both supine and prone end-inspiratory volumes. Comparing end-expiratory to end-inspiratory volume, we see primarily a change in the cranial–caudal dimension of the lung, reflective of movement of diaphragm. In the diaphragmatic region, there is greater regional lung expansion than in the cranial aspect, which is restricted by the chest wall. When moving from supine to prone, a restriction of lung was observed anteriorly, resulting in a generally reduced lung volume and a redistribution of air volume posteriorly. In general, we see the highest in lung tissue density heterogeneity in regions of the lung that are most inflated. Using our computational model, we quantify the impact of pleural cavity shape change on regional lung distribution and predict the impact on regional elastic recoil pressure.

References

References
1.
Hopkins
,
S. R.
,
Henderson
,
A. C.
,
Levin
,
D. L.
,
Yamada
,
K.
,
Arai
,
T.
,
Buxton
,
R. B.
, and
Prisk
,
G. K.
,
2007
, “
Vertical Gradients in Regional Lung Density and Perfusion in the Supine Human Lung: The Slinky Effect
,”
J. Appl. Physiol.
,
103
(
1
), pp.
240
248
.
2.
Prisk
,
G. K.
,
Yamada
,
K.
,
Henderson
,
A. C.
,
Arai
,
Tatsuya
,
J.
,
Levin
,
D. L.
,
Buxton
,
R. B.
, and
Hopkins
,
S. R.
,
2007
, “
Pulmonary Perfusion in the Prone and Supine Postures in the Normal Human Lung
,”
J. Appl. Physiol.
,
103
(
3
), pp.
883
894
.
3.
Tawhai
,
M. H.
,
Nash
,
M. P.
,
Lin
,
C.-L.
, and
Hoffman
,
E. A.
,
2009
, “
Supine and Prone Differences in Regional Lung Density and Pleural Pressure Gradients in the Human Lung With Constant Shape
,”
J. Appl. Physiol.
,
107
(
3
), pp.
912
920
.
4.
Petersson
,
J.
,
Rohdin
,
M.
,
Sanchez-Crespo
,
A.
,
Nyren
,
S.
,
Jacobsson
,
H.
,
Larsson
,
S. A.
,
Lindahl
,
S. G. E.
,
Linnarsson
,
D.
,
Neradilek
,
B.
,
Polissar
,
N. L.
,
Glenny
,
R. W.
, and
Mure
,
M.
,
2007
, “
Posture Primarily Affects Lung Tissue Distribution With Minor Effect on Blood Flow and Ventilation
,”
Respir. Physiol. Neurobiol.
,
156
(
3
), pp.
293
303
.
5.
Hoffman
,
E. A.
,
1985
, “
Effect of Body Orientation on Regional Lung Expansion: A Computed Tomographic Approach
,”
J. Appl. Physiol.
,
59
(
2
), pp.
468
480
.
6.
Hoffman
,
E.
, and
Ritman
,
E. L.
,
1985
, “
Effect of Body Orientation on Regional Lung Expansion in Dog and Sloth
,”
J. Appl. Physiol.
,
59
(
2
), pp.
481
491
.
7.
Tawhai
,
M. H.
,
Nash
,
M. P.
, and
Hoffman
,
E. A.
,
2006
, “
An Imaging-Based Computational Approach to Model Ventilation Distribution and Soft-Tissue Deformation in the Ovine Lung
,”
Acad. Radiol.
,
13
(
1
), pp.
113
120
.
8.
Burrowes
,
K. S.
, and
Tawhai
,
M. H.
,
2006
, “
Computational Predictions of Pulmonary Blood Flow Gradients: Gravity Versus Structure
,”
Respir. Physiol. Neurobiol.
,
154
(
3
), pp.
515
523
.
9.
Swan
,
A. J.
,
Clark
,
A. R.
, and
Tawhai
,
M. H.
,
2012
, “
A Computational Model of the Topographic Distribution of Ventilation in Healthy Human Lungs
,”
J. Theor. Biol.
,
300
, pp.
222
231
.
10.
Chon
,
D.
,
Beck
,
K. C.
,
Larsen
,
R. L.
,
Shikata
,
H.
, and
Hoffman
,
E. A.
,
2006
, “
Regional Pulmonary Blood Flow in Dogs by 4D-X-Ray CT
,”
J. Appl. Physiol.
,
101
(
5
), pp.
1451
1465
.
11.
Matthews
,
F. L.
, and
West
,
J. B.
,
1972
, “
Finite Element Displacement Analysis of a Lung
,”
J. Biomech.
,
5
(
6
), pp.
591
600
.
12.
Vawter
,
D. L.
,
Matthews
,
F. L.
, and
West
,
J. B.
,
1975
, “
Effect of Shape and Size of Lung and Chest Wall on Stresses in the Lung
,”
J. Appl. Physiol.
,
39
(
1
), pp.
9
17
.
13.
Sundaram
,
T. A.
,
Avants
,
B. B.
, and
Gee
,
J. C.
,
2005
, “
Towards a Dynamic Model of Pulmonary Parenchymal Deformation: Evaluation of Methods for Temporal Reparameterization of Lung Data. Med. Image Comput. Comput
,”
Assist. Interv.
,
8
(
Pt. 2
), pp.
328
335
.
14.
Werner
,
R.
,
Ehrhardt
,
J.
,
Schmidt
,
R.
, and
Handels
,
H.
,
2009
, “
Patient-Specific Finite Element Modeling of Respiratory Lung Motion Using 4D CT Image Data
,”
Med. Phys.
,
36
(
5
), pp.
1500
1511
.
15.
Cluzel
,
P.
,
Similowski
,
T.
,
Chartrand-Lefebvre
,
C.
,
Zelter
,
M.
,
Derenne
,
J.-P.
, and
Grenier
,
P. A.
,
2000
, “
Diaphragm and Chest Wall: Assessment of the Inspiratory Pump With MR Imaging—Preliminary Observations
,”
Radiology
,
215
(
2
), pp.
574
583
.
16.
Suwatanapongched
,
T.
,
Gierada
,
D. S.
,
Slone
,
R. M.
,
Pilgram
,
T. K.
, and
Tuteur
,
P. G.
,
2003
, “
Variation in Diaphragm Position and Shape in Adults With Normal Pulmonary Function
,”
Chest
,
123
(
6
), pp.
2019
2027
.
17.
Hoffman
,
E.
,
Acharya
,
R.
, and
Wollins
,
J.
,
1986
, “
Computer-Aided Analysis of Regional Lung Air Content Using Three-Dimensional Computed Tomographic Images and Multinomial Models
,”
Math. Modell.
,
7
(
5–8
), pp.
1099
1116
.
18.
Ho-Fung
,
C.
,
Tawhai
,
M. H.
,
Levin
,
D. L.
,
Bartholmai
,
B. B.
, and
Clark
,
A. R.
,
2014
, “
Supine to Upright Lung Mechanics: Do Changes in Lung Shape Influence Lung Tissue Deformation?
,” 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Chicago, IL, Aug. 26–30, pp.
832
835
.
19.
Galvin
,
I.
,
Drummond
,
G. B.
, and
Nirmalan
,
M.
,
2007
, “
Distribution of Blood Flow and Ventilation in the Lung: Gravity Is Not the Only Factor
,”
Br. J. Anaesth.
,
98
(
4
), pp.
420
8
.
20.
Amelon
,
R.
,
2012
, “
Development and Characterization of a Finite Element Model of Lung Motion
,” Ph.D. thesis, The University of Iowa, Iowa City, IA.
21.
Hering
,
R.
,
Wrigge
,
H.
,
Vorwerk
,
R.
,
Brensing
,
K. A.
,
Schröder
,
S.
,
Zinserling
,
J.
,
Hoeft
,
A.
,
Spiegel
,
T. V.
, and
Putensen
,
C.
,
2001
, “
The Effects of Prone Positioning on Intraabdominal Pressure and Cardiovascular and Renal Function in Patients With Acute Lung Injury
,”
Anesth. Analg.
,
92
(
5
), pp.
1226
1231
.
22.
Gattinoni
,
L.
,
Tognoni
,
G.
,
Pesenti
,
A.
,
Taccone
,
P.
,
Mascheroni
,
D.
,
Labarta
,
V.
,
Malacrida
,
R.
,
Di Giulio
,
P.
,
Fumagalli
,
R.
,
Pelosi
,
P.
,
Brazzi
,
L.
, and
Latini
,
R.
,
2001
, “
Effect of Prone Positioning on the Survival of Patients With Acute Respiratory Failure
,”
N. Engl. J. Med.
,
345
(
8
), pp.
568
573
.
23.
Albert
,
R. K.
, and
Hubmayr
,
R. D.
,
2000
, “
The Prone Position Eliminates Compression of the Lungs by the Heart
,”
Am. J. Respir. Crit. Care Med.
,
161
(
5
), pp.
1660
1665
.
24.
Hajnal
,
J. V.
, and
Hill
,
D. J. G.
,
2001
,
Medical Image Registration
,
CRC Press
,
Boca Raton, FL
, p.
392
.
25.
Werner
,
R.
,
Schmidt-Richberg
,
A.
,
Handels
,
H.
, and
Ehrhardt
,
J.
,
2014
, “
Estimation of Lung Motion Fields in 4D CT Data by Variational Non-Linear Intensity-Based Registration: A Comparison and Evaluation Study
,”
Phys. Med. Biol.
,
59
(
15
), pp.
4247
4260
.
26.
Lee
,
A. W. C.
,
Schnabel
,
J. A.
,
Rajagopal
,
V.
,
Nielsen
,
P. M. F.
, and
Nash
,
M. P.
,
2010
,
Breast Image Registration by Combining Finite Elements and Free-Form Deformations
(Lecture Notes in Computer Science),
Springer
,
Berlin
, pp.
736
743
.
27.
Yang
,
Y. X.
,
Teo
,
S. K.
,
Van Reeth
,
E.
,
Tan
,
C. H.
,
Tham
,
I. W. K.
, and
Poh
,
C. L.
,
2015
, “
A Hybrid Approach for Fusing 4D-MRI Temporal Information With 3D-CT for the Study of Lung and Lung Tumor Motion
,”
Med. Phys.
,
42
(
8
), pp.
4484
4496
.
28.
Li
,
B.
,
Christensen
,
G. E.
,
Hoffman
,
E. A.
,
McLennan
,
G.
, and
Reinhardt
,
J. M.
,
2003
, “
Establishing a Normative Atlas of the Human Lung: Intersubject Warping and Registration of Volumetric CT Images
,”
Acad. Radiol.
,
10
(
3
), pp.
255
265
.
29.
Alnaser
,
A.
,
Gong
,
B. K.
, and
Moeller
,
K.
,
2016
, “
Evaluation of Open-Source Software for the Lung Segmentation
,”
Curr. Dir. Biomed. Eng.
,
2
(
1
), pp.
515
518
.
30.
Fernandez
,
J. W.
,
Mithraratne
,
P.
,
Thrupp
,
S. F.
,
Tawhai
,
M. H.
, and
Hunter
,
P. J.
,
2004
, “
Anatomically Based Geometric Modelling of the Musculo-Skeletal System and Other Organs
,”
Biomech. Model. Mechanobiol.
,
2
(
3
), pp.
139
155
.
31.
Bradley
,
C. P.
,
Pullan
,
A. J.
, and
Hunter
,
P. J.
,
1997
, “
Geometric Modeling of the Human Torso Using Cubic Hermite Elements
,”
Ann. Biomed. Eng.
,
25
(
1
), pp.
96
111
.
32.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
33.
Schnabel
,
J. A.
,
Rueckert
,
D.
,
Quist
,
M.
,
Blackall
,
J. M.
,
Castellano-Smith
,
A. D.
,
Hartkens
,
T.
,
Penney
,
G. P.
,
Hall
,
W. A.
,
Liu
,
H.
,
Truwit
,
C. L.
,
Gerritsen
,
F. A.
,
Hill
,
D. L. G.
, and
Hawkes
,
D. J.
,
2001
, “
A Generic Framework for Non-Rigid Registration Based on Non-Uniform Multi-Level Free-Form Deformations
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2001
,
Springer
,
Berlin
, pp.
573
581
.
34.
Clark
,
A. R.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Burrowes
,
K. S.
,
2011
, “
The Interdependent Contributions of Gravitational and Structural Features to Perfusion Distribution in a Multiscale Model of the Pulmonary Circulation
,”
J. Appl. Physiol.
,
110
(
4
), pp.
943
955
.
35.
Jahani
,
N.
,
Yin
,
Y.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2014
, “
Assessment of Regional Non-Linear Tissue Deformation and Air Volume Change of Human Lungs Via Image Registration
,”
J. Biomech.
,
47
(
7
), pp.
1626
1633
.
36.
Fredberg
,
J.
, and
Kamm
,
R.
,
2006
, “
Stress Transmission in the Lung: Pathways From Organ to Molecule
,”
Annu. Rev. Physiol.
,
68
, pp.
507
541
.
37.
Amelon
,
R.
,
Cao
,
K.
,
Ding
,
K.
,
Christensen
,
G. E.
,
Reinhardt
,
J. M.
, and
Raghavan
,
M. L.
,
2011
, “
Three-Dimensional Characterization of Regional Lung Deformation
,”
J. Biomech.
,
44
(
13
), pp.
2489
2495
.
38.
Walther
,
S. M.
,
Domino
,
K. B.
,
Glenny
,
R. W.
,
Polissar
,
N. L.
, and
Hlastala
,
M. P.
,
1997
, “
Pulmonary Blood Flow Distribution Has a Hilar-to-Peripheral Gradient in Awake, Prone Sheep
,”
J. Appl. Physiol.
,
82
(
2
), pp.
678
685
.
39.
Richter
,
T.
,
Bergmann
,
R.
,
Pietzsch
,
J.
,
Kozle
,
I.
,
Hofheinz
,
F.
,
Schiller
,
E.
,
Ragaller
,
M.
, and
van den Hoff
,
J.
,
2010
, “
Effects of Posture on Regional Pulmonary Blood Flow in Rats as Measured by PET
,”
J. Appl. Physiol.
,
108
(
2
), pp.
422
429
.
40.
Yang
,
Q. H.
, and
Lai-Fook
,
S. J.
,
1991
, “
Effect of Lung Inflation on Regional Lung Expansion in Supine and Prone Rabbits
,”
J. Appl. Physiol.
,
71
(
1
), pp.
76
82
.
41.
Brower
,
R.
,
Wise
,
R. A.
,
Hassapoyannes
,
C.
,
Bromberger-Barnea
,
B.
, and
Permutt
,
S.
,
1985
, “
Effect of Lung Inflation on Lung Blood Volume and Pulmonary Venous Flow
,”
J. Appl. Physiol.
,
58
(
3
), pp.
954
963
.
You do not currently have access to this content.