The porous structure of the natural bone not only has the characteristics of lightweight and high strength but also is conducive to the growth of cells and tissues due to interconnected pores. In this paper, a novel gradient-controlled parametric modeling technology is presented to design bone tissue engineering (BTE) scaffold. First of all, the method functionalizes the pore distribution in the bone tissue, and reconstructs the pore distribution of the bone tissue in combination with the pathological analysis of the bone defect area of the individual patient. Then, based on the reconstructed pore distribution, the Voronoi segmentation algorithm and the contour interface optimization method are used to reconstruct the whole model of the bone tissue. Finally, the mechanical properties of the scaffold are studied by the finite element analysis of different density gradient scaffolds. The results show that the method is highly feasible. BTE scaffold can be designed by irregular design methods and adjustment of pore distribution parameters, which is similar with natural bone in structural characteristics and biomechanical properties

References

References
1.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
,
2000
, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
570
575
.
2.
Reddi
,
A. H.
, and
Cunningham
,
N. S.
,
1991
, “
Recent Progress in Bone Induction by Osteogenin and Bone Morphogenetic Proteins: Challenges for Biomechanical and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
113
(
2
), pp.
189
190
.
3.
Khojasteh
,
A.
,
Behnia
,
H.
,
Dashti
,
S. G.
, and
Stevens
,
M.
,
2012
, “
Current Trends in Mesenchymal Stem Cell Application in Bone Augmentation: A Review of the Literature
,”
J. Oral Maxillofac. Surg.
,
70
(
4
), pp.
972
982
.
4.
Ma
,
P. X.
, and
Langer
,
R.
,
1999
, “
Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering
,”
Tissue Engineering Methods and Protocols
(Methods in Molecular Medicine, Vol. 18), pp.
47
56
.
5.
P X
,
M.
,
2003
, “
Biomimetic Materials for Tissue Engineering
,”
Adv. Drug Delivery Rev.
,
24
(
24
), pp.
4353
4364
.
6.
Bawolin
,
N. K.
,
Dolovich
,
A. T.
,
Chen
,
D. X. B.
, and
Zhang
,
C. W. J.
,
2015
, “
Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
137
(
8
), p.
081004
.
7.
Sumner
,
D. R.
,
2015
, “
Long-Term Implant Fixation and Stress-Shielding in Total Hip Replacement
,”
J. Biomech.
,
48
(
5
), pp.
797
800
.
8.
Cheah
,
C. M.
,
Chua
,
C. K.
,
Leong
,
K. F.
, and
Chua
,
S. W.
,
2003
, “
Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping—Part 1: Investigation and Classification
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
291
301
.
9.
Cheah
,
C. M.
,
Chua
,
C. K.
,
Leong
,
K. F.
, and
Chua
,
S. W.
,
2003
, “
Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping—Part 2: Parametric Library and Assembly Program
,”
Int. J. Adv. Manuf. Technol.
,
21
(
4
), pp.
302
312
.
10.
Sun
,
W.
,
Starly
,
B.
,
Darling
,
A.
, and
Gomez
,
C.
,
2005
, “
Computer-Aided Tissue Engineering: Application to Biomimetic Modelling and Design of Tissue Scaffolds
,”
J. Med. Biomech.
,
39
(
1
), pp.
49
58
.
11.
Melchels
,
F. P.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2009
, “
A Poly(D,L-Lactide) Resin for the Preparation of Tissue Engineering Scaffolds by Stereolithography
,”
Biomaterials
,
30
(
23–24
), pp.
3801
3809
.
12.
Yoo
,
D. J.
,
2011
, “
Porous Scaffold Design Using the Distance Field and Triply Periodic Minimal Surface Models
,”
Biomaterials
,
32
(
31
), p.
7741
.
13.
Kadkhodapour
,
J.
,
Montazerian
,
H.
, and
Raeisi
,
S.
,
2014
, “
Investigating Internal Architecture Effect in Plastic Deformation and Failure for TPMS-Based Scaffolds Using Simulation Methods and Experimental Procedure
,”
Mater. Sci. Eng. C
,
43
, pp.
587
597
.
14.
Olivares
,
A. L.
,
Marsal
,
E.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2009
, “
Finite Element Study of Scaffold Architecture Design and Culture Conditions for Tissue Engineering
,”
Biomaterials
,
30
(
30
), pp.
6142
6149
.
15.
Hollister
,
S. J.
, and
Kikuchi
,
N.
,
1994
, “
Homogenization Theory and Digital Imaging: A Basis for Studying the Mechanics and Design Principles of Bone Tissue
,”
Biotechnol. Bioeng.
,
43
(
7
), pp.
586
596
.
16.
Hollister
,
S. J.
, and
Lin
,
C. Y.
,
2007
, “
Computational Design of Tissue Engineering Scaffolds
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
2991
2998
.
17.
Lal
,
P.
, and
Sun
,
W.
,
2004
, “
Computer Modeling Approach for Microsphere-Packed Bone Scaffold
,”
Comput.-Aided Des.
,
36
(
5
), pp.
487
497
.
18.
Schroeder
,
C.
,
Regli
,
W. C.
,
Shokoufandeh
,
A.
, and
Sun
,
W.
,
2005
, “
Computer-Aided Design of Porous Artifacts
,”
Comput.-Aided Des.
,
37
(
3
), pp.
339
353
.
19.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2010
, “
A Simple and Effective Geometric Representation for Irregular Porous Structure Modeling
,”
Comput.-Aided Des.
,
42
(
10
), pp.
930
941
.
20.
Yang
,
N.
,
Gao
,
L.
, and
Zhou
,
K.
,
2015
, “
Simple Method to Generate and Fabricate Stochastic Porous Scaffolds
,”
Mater. Sci. Eng. C
,
56
, pp.
444
450
.
21.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures
,”
IEEE Trans. Visualization Comput. Graphics
,
24
(
2
), pp.
1127
1140
.
22.
Giannitelli
,
S. M.
,
Accoto
,
D.
,
Trombetta
,
M.
, and
Rainer
,
A.
,
2014
, “
Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering
,”
Acta Biomater.
,
10
(
2
), pp.
580
594
.
23.
Najman
,
L.
, and
Schmitt
,
M.
,
1994
, “
Watershed of a Continuous Function
,”
Signal Process.
,
38
(
1
), pp.
99
112
.
24.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.
25.
Stam
,
J.
,
1998
, “
Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values
,”
SIGGRAPH
, Orlando, FL, Vol.
98
, pp.
395
404
.
26.
Giordano
,
R. A.
,
Wu
,
B. M.
,
Borland
,
S. W.
,
Cima
,
L. G.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
,
1996
, “
Mechanical Properties of Dense Polylactic Acid Structures Fabricated by Three Dimensional Printing
,”
J. Biomater. Sci., Polym. Ed.
,
8
(
1
), pp.
63
75
.
27.
Fantini
,
M.
,
Curto
,
M.
, and
Crescenzio
,
F. D.
,
2016
, “
A Method to Design Biomimetic Scaffolds for Bone Tissue Engineering Based on Voronoi Lattices
,”
Virtual Phys. Prototyping
,
11
(
2
), pp.
77
90
.
28.
Gómez
,
S.
,
Vlad
,
M. D.
,
López
,
J.
, and
Fernández
,
E.
,
2016
, “
Design and Properties of 3D Scaffolds for Bone Tissue Engineering
,”
Acta Biomater.
,
42
, pp.
341
350
.
29.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.
30.
Gómez
,
S.
,
Vlad
,
M. D.
,
López
,
J.
,
Navarro
,
M.
, and
Fernández
,
E.
,
2013
, “
Characterization and Three-Dimensional Reconstruction of Synthetic Bone Model Foams
,”
Mater. Sci. Eng. C
,
33
(
6
), pp.
3329
3335
.
31.
Hollinger
,
J. O.
, and
Battistone
,
G. C.
,
1986
, “
Biodegradable Bone Repair Materials: Synthetic Polymers and Ceramics
,”
Clin. Orthop. Relat. Res.
,
207
(
207
), p.
290
.https://insights.ovid.com/crossref?an=00003086-198606000-00046
32.
Hulbert
,
S. F.
,
Young
,
F. A.
,
Mathews
,
R. S.
,
Klawitter
,
J. J.
,
Talbert
,
C. D.
, and
Stelling
,
F. H.
,
1970
, “
Potential of Ceramic Materials as Permanently Implantable Skeletal Prostheses
,”
J. Biomed. Mater. Res., Part A
,
4
(
3
), p.
433
.
33.
Kadir
,
M. R. A.
,
Syahrom
,
A.
, and
Öchsner
,
A.
,
2010
, “
Finite Element Analysis of Idealised Unit Cell Cancellous Structure Based on Morphological Indices of Cancellous Bone
,”
Med. Biol. Eng. Comput.
,
48
(
5
), pp.
497
505
.
34.
Ulrich
,
D.
,
van Rietbergen
,
B.
,
Laib
,
A.
, and
R¨uegsegger
,
P.
,
1999
, “
The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,”
Bone
,
25
(
1
), pp.
55
60
.
35.
Hutmacher
,
D. W.
,
2000
, “
Scaffolds in Tissue Engineering Bone and Cartilage
,”
Biomaterials
,
21
(
24
), pp.
2529
2543
.
You do not currently have access to this content.